hanhainebula commited on
Commit
4ff50d0
·
verified ·
1 Parent(s): 3505c38

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ imgs/bright-performance.png filter=lfs diff=lfs merge=lfs -text
37
+ search_results/examples/biology-examples.json filter=lfs diff=lfs merge=lfs -text
38
+ search_results/examples/earth_science-examples.json filter=lfs diff=lfs merge=lfs -text
39
+ search_results/examples/economics-examples.json filter=lfs diff=lfs merge=lfs -text
40
+ search_results/examples/leetcode-examples.json filter=lfs diff=lfs merge=lfs -text
41
+ search_results/examples/pony-examples.json filter=lfs diff=lfs merge=lfs -text
42
+ search_results/examples/psychology-examples.json filter=lfs diff=lfs merge=lfs -text
43
+ search_results/examples/robotics-examples.json filter=lfs diff=lfs merge=lfs -text
44
+ search_results/examples/stackoverflow-examples.json filter=lfs diff=lfs merge=lfs -text
45
+ search_results/examples/sustainable_living-examples.json filter=lfs diff=lfs merge=lfs -text
46
+ search_results/examples/theoremqa_questions-examples.json filter=lfs diff=lfs merge=lfs -text
47
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 4096,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - feature-extraction
4
+ - sentence-similarity
5
+ - sentence-transformers
6
+ - transformers
7
+ license: apache-2.0
8
+ ---
9
+
10
+
11
+ <div align="center">
12
+ <h1> ReasonEmbed: Enhanced Text Embeddings for Reasoning-Intensive Document Retrieval </h1>
13
+ </div>
14
+
15
+ <p align="center">
16
+ <a href="https://arxiv.org/abs/2510.08252" target="_blank" rel="noopener noreferrer">
17
+ <img src="https://img.shields.io/badge/arXiv-2510.08252-B31B1B.svg?style=flat-square&logo=arxiv&logoColor=white" alt="arXiv:2510.08252">
18
+ </a>
19
+ </p>
20
+
21
+ We propose **ReasonEmbed**, a new text embedding model for reasoning-intensive document retrieval based on innovations of how synthetic data is generated and used. For more details please refer to our Github: [ReasonEmbed](https://github.com/VectorSpaceLab/agentic-search/tree/main/ReasonEmbed) and our [paper](https://arxiv.org/abs/2510.08252).
22
+
23
+
24
+ ## Introduction
25
+
26
+ This repository hosts the model **reason-embed-basic-qwen3-8b-0928**, which is fine-tuned based on [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) using the basic InfoNCE loss on our synthetic dataset. It achieves an nDCG@10 of 37.1 on the [BRIGHT](https://brightbenchmark.github.io/) benchmark with original query, demonstrating its strong capability in reasoning-intensive retrieval tasks.
27
+
28
+ The search results on BRIGHT are available [here](./search_results/examples/). We also provide the evaluation [script](./evaluation_scripts/eval_bright_short.sh) to reproduce the results.
29
+
30
+ ![bright-performance](./imgs/bright-performance.png)
31
+
32
+ ## Usage
33
+
34
+ ### Using FlagEmbedding
35
+ ```
36
+ git clone https://github.com/FlagOpen/FlagEmbedding.git
37
+ cd FlagEmbedding
38
+ pip install -e .
39
+ ```
40
+
41
+ ```python
42
+ from FlagEmbedding import FlagLLMModel
43
+ queries = [
44
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
45
+ "Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
46
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
47
+ "Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
48
+ ]
49
+ documents = [
50
+ # taken from BRIGHT TheoT dataset, docid: 2723
51
+ "\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
52
+ # taken from BRIGHT TheoT dataset, docid: 14101
53
+ "\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
54
+ ]
55
+ model = FlagLLMModel("hanhainebula/reason-embed-basic-qwen3-8b-0928",
56
+ query_instruction_for_retrieval="Given a Math problem, retrieve relevant theorems that help answer the problem.",
57
+ query_instruction_format="Instruct: {}\nQuery: {}",
58
+ devices="cuda:0", # set devices to "cuda:0" for testing on a single GPU
59
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
60
+ embeddings_1 = model.encode_queries(queries)
61
+ embeddings_2 = model.encode_corpus(documents)
62
+ similarity = embeddings_1 @ embeddings_2.T
63
+ print(similarity)
64
+ ```
65
+
66
+
67
+ ### Using Sentence Transformers
68
+
69
+ ```python
70
+ from sentence_transformers import SentenceTransformer
71
+ import torch
72
+
73
+ # Load the model, optionally in float16 precision for faster inference
74
+ model = SentenceTransformer("hanhainebula/reason-embed-basic-qwen3-8b-0928", model_kwargs={"torch_dtype": torch.float16})
75
+
76
+
77
+ queries = [
78
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
79
+ "Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
80
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
81
+ "Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
82
+ ]
83
+ documents = [
84
+ # taken from BRIGHT TheoT dataset, docid: 2723
85
+ "\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
86
+ # taken from BRIGHT TheoT dataset, docid: 14101
87
+ "\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
88
+ ]
89
+
90
+ query_embeddings = model.encode(queries, prompt="Instruct: Given a Math problem, retrieve relevant theorems that help answer the problem.\nQuery: ")
91
+ document_embeddings = model.encode(documents)
92
+
93
+ # Compute the (cosine) similarity between the query and document embeddings
94
+ similarity = model.similarity(query_embeddings, document_embeddings)
95
+ print(similarity)
96
+ ```
97
+
98
+
99
+ ### Using HuggingFace Transformers
100
+ ```python
101
+ import torch
102
+ import torch.nn.functional as F
103
+
104
+ from torch import Tensor
105
+ from transformers import AutoTokenizer, AutoModel
106
+
107
+
108
+ def last_token_pool(last_hidden_states: Tensor,
109
+ attention_mask: Tensor) -> Tensor:
110
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
111
+ if left_padding:
112
+ return last_hidden_states[:, -1]
113
+ else:
114
+ sequence_lengths = attention_mask.sum(dim=1) - 1
115
+ batch_size = last_hidden_states.shape[0]
116
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
117
+
118
+
119
+ def get_detailed_instruct(task_description: str, query: str) -> str:
120
+ return f'Instruct: {task_description}\nQuery: {query}'
121
+
122
+
123
+ def tokenize_texts(tokenizer, texts, max_length: int, device: str):
124
+ batch_dict = tokenizer(texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8)
125
+ batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
126
+ return batch_dict
127
+
128
+
129
+ task = 'Given a Math problem, retrieve relevant theorems that help answer the problem.'
130
+ queries = [
131
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
132
+ "Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
133
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
134
+ "Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
135
+ ]
136
+ queries = [get_detailed_instruct(task, q) for q in queries]
137
+ documents = [
138
+ # taken from BRIGHT TheoT dataset, docid: 2723
139
+ "\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
140
+ # taken from BRIGHT TheoT dataset, docid: 14101
141
+ "\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
142
+ ]
143
+
144
+ tokenizer = AutoTokenizer.from_pretrained("hanhainebula/reason-embed-basic-qwen3-8b-0928")
145
+ model = AutoModel.from_pretrained("hanhainebula/reason-embed-basic-qwen3-8b-0928")
146
+ model.eval()
147
+
148
+ device = "cuda:0" # set device to "cuda:0" for testing on a single GPU
149
+ model.to(device)
150
+ model.half()
151
+
152
+ max_length = 512
153
+ # Tokenize the input texts
154
+ query_batch_dict = tokenize_texts(tokenizer, queries, max_length, device)
155
+ doc_batch_dict = tokenize_texts(tokenizer, documents, max_length, device)
156
+
157
+ with torch.no_grad():
158
+ query_outputs = model(**query_batch_dict)
159
+ query_embeddings = last_token_pool(query_outputs.last_hidden_state, query_batch_dict['attention_mask'])
160
+
161
+ doc_outputs = model(**doc_batch_dict)
162
+ doc_embeddings = last_token_pool(doc_outputs.last_hidden_state, doc_batch_dict['attention_mask'])
163
+
164
+ # normalize embeddings
165
+ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
166
+ doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
167
+ scores = (query_embeddings @ doc_embeddings.T) * 100
168
+ print(scores.cpu().tolist())
169
+ ```
170
+
171
+
172
+ ## Citation
173
+
174
+ If you find this repository useful, please consider giving a star ⭐ and citation:
175
+ ```
176
+ @article{chen2025reasonembed,
177
+ title={ReasonEmbed: Enhanced Text Embeddings for Reasoning-Intensive Document Retrieval},
178
+ author={Chen, Jianlyu and Lan, Junwei and Li, Chaofan and Lian, Defu and Liu, Zheng},
179
+ journal={arXiv preprint arXiv:2510.08252},
180
+ year={2025}
181
+ }
182
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.1",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompts": {
3
+ "query": "Instruct: Given a query, retrieve documents that can help answer the query.\nQuery: ",
4
+ "document": ""
5
+ },
6
+ "default_prompt_name": null,
7
+ "similarity_fn_name": "cosine"
8
+ }
evaluation_scripts/eval_bright_short.sh ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ if [ -z "$HF_HUB_CACHE" ]; then
2
+ export HF_HUB_CACHE="$HOME/.cache/huggingface/hub"
3
+ fi
4
+
5
+ # full datasets
6
+ dataset_names="biology earth_science economics psychology robotics stackoverflow sustainable_living leetcode pony aops theoremqa_questions theoremqa_theorems"
7
+
8
+ model_args="\
9
+ --embedder_name_or_path hanhainebula/reason-embed-basic-qwen3-8b-0928 \
10
+ --embedder_model_class decoder-only-base \
11
+ --query_instruction_format_for_retrieval 'Instruct: {}\nQuery: {}' \
12
+ --pooling_method last_token \
13
+ --devices cuda:0 cuda:1 cuda:2 cuda:3 cuda:4 cuda:5 cuda:6 cuda:7 \
14
+ --cache_dir $HF_HUB_CACHE \
15
+ --embedder_batch_size 8 \
16
+ --embedder_query_max_length 8192 \
17
+ --embedder_passage_max_length 8192 \
18
+ "
19
+
20
+ split_list=("examples" "gpt4_reason")
21
+
22
+ for split in "${split_list[@]}"; do
23
+ eval_args="\
24
+ --task_type short \
25
+ --use_special_instructions True \
26
+ --eval_name bright_short \
27
+ --dataset_dir ./bright_short/data \
28
+ --dataset_names $dataset_names \
29
+ --splits $split \
30
+ --corpus_embd_save_dir ./bright_short/corpus_embd \
31
+ --output_dir ./bright_short/search_results/$split \
32
+ --search_top_k 2000 \
33
+ --cache_path $HF_HUB_CACHE \
34
+ --overwrite False \
35
+ --k_values 1 10 100 \
36
+ --eval_output_method markdown \
37
+ --eval_output_path ./bright_short/eval_results_$split.md \
38
+ --eval_metrics ndcg_at_10 recall_at_10 recall_at_100 \
39
+ "
40
+
41
+ cmd="python -m FlagEmbedding.evaluation.bright \
42
+ $eval_args \
43
+ $model_args \
44
+ "
45
+
46
+ echo $cmd
47
+ eval $cmd
48
+
49
+ done
imgs/bright-performance.png ADDED

Git LFS Details

  • SHA256: bba9d2bec6882499a58aebfd4a50f1190285af2fd75ce583d1710911428da83b
  • Pointer size: 131 Bytes
  • Size of remote file: 311 kB
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23735afff7b5c593498770ad7aae03015c654b15704b3b96ff6942749fb1db90
3
+ size 4972454136
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:445fa2ef4c1a6e1017c065b81d7f093d1e2bd0c38fbcbf66d9eb103110cba7eb
3
+ size 4832048200
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:116e3da92c066e1882e1542ac6f6bee5c6ed5d7c7628370ef20cdc7f14bda11e
3
+ size 4832048248
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acc49af2f5ef9bb6110d36d283985b09dce57e84f18b16e77e57083959c1518d
3
+ size 4999855080
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:493967c31db9e3797c6fd5fc333594d72f0d620c8834e7d67b96f51026b499a7
3
+ size 4832048272
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a7d880cb754b2e9eb5bfde7f6e5a4d20a499aeea9b6c5626777cfd3329ca407
3
+ size 4832048264
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48ae6a7506557bd220521094305cb815782bea7bcc9721db8aa38719330bede4
3
+ size 973163080
model.safetensors.index.json ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30273622016
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00007.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
12
+ "layers.0.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
15
+ "layers.0.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
17
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
18
+ "layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
19
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
20
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
21
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
22
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
23
+ "layers.1.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
24
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
25
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
26
+ "layers.1.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
27
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
28
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
29
+ "layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
30
+ "layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
31
+ "layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
32
+ "layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
33
+ "layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
34
+ "layers.10.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
35
+ "layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
36
+ "layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
37
+ "layers.10.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
38
+ "layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
39
+ "layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
40
+ "layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
41
+ "layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
42
+ "layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
43
+ "layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
44
+ "layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "layers.11.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
46
+ "layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
47
+ "layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
48
+ "layers.11.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
49
+ "layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
50
+ "layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
51
+ "layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
52
+ "layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
53
+ "layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
54
+ "layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
55
+ "layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
56
+ "layers.12.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
57
+ "layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
58
+ "layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
59
+ "layers.12.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
60
+ "layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
61
+ "layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
62
+ "layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
63
+ "layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
64
+ "layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
65
+ "layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
66
+ "layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
67
+ "layers.13.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
68
+ "layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
69
+ "layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
70
+ "layers.13.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
71
+ "layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
72
+ "layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
73
+ "layers.14.input_layernorm.weight": "model-00003-of-00007.safetensors",
74
+ "layers.14.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
75
+ "layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
76
+ "layers.14.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
77
+ "layers.14.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
78
+ "layers.14.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
79
+ "layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
80
+ "layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
81
+ "layers.14.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
82
+ "layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
83
+ "layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
84
+ "layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
86
+ "layers.15.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
87
+ "layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
88
+ "layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
89
+ "layers.15.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
90
+ "layers.15.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
91
+ "layers.15.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
92
+ "layers.15.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
93
+ "layers.15.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
94
+ "layers.15.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
95
+ "layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
96
+ "layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
97
+ "layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
98
+ "layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
99
+ "layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
100
+ "layers.16.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
101
+ "layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
102
+ "layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
103
+ "layers.16.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
104
+ "layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
105
+ "layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
106
+ "layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
107
+ "layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
108
+ "layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
109
+ "layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
110
+ "layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
111
+ "layers.17.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
112
+ "layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
113
+ "layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
114
+ "layers.17.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
115
+ "layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
116
+ "layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
117
+ "layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
118
+ "layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
119
+ "layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
120
+ "layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
121
+ "layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
122
+ "layers.18.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
123
+ "layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
124
+ "layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
125
+ "layers.18.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
126
+ "layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
127
+ "layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
129
+ "layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
130
+ "layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
133
+ "layers.19.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
134
+ "layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "layers.19.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
137
+ "layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
139
+ "layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
140
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
141
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
142
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
143
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
144
+ "layers.2.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
145
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
146
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
147
+ "layers.2.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
148
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
149
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
150
+ "layers.20.input_layernorm.weight": "model-00004-of-00007.safetensors",
151
+ "layers.20.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
152
+ "layers.20.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
153
+ "layers.20.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
154
+ "layers.20.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
155
+ "layers.20.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
156
+ "layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
157
+ "layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
158
+ "layers.20.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
159
+ "layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
160
+ "layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
161
+ "layers.21.input_layernorm.weight": "model-00004-of-00007.safetensors",
162
+ "layers.21.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
163
+ "layers.21.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
164
+ "layers.21.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
165
+ "layers.21.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
166
+ "layers.21.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
167
+ "layers.21.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
168
+ "layers.21.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
169
+ "layers.21.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
170
+ "layers.21.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
171
+ "layers.21.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
172
+ "layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
173
+ "layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
174
+ "layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
175
+ "layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
176
+ "layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "layers.22.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
178
+ "layers.22.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
179
+ "layers.22.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
180
+ "layers.22.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
181
+ "layers.22.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
182
+ "layers.22.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
183
+ "layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
184
+ "layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
185
+ "layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
186
+ "layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
187
+ "layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
188
+ "layers.23.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
189
+ "layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
190
+ "layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
191
+ "layers.23.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
192
+ "layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
193
+ "layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
194
+ "layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
195
+ "layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
196
+ "layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
197
+ "layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
198
+ "layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
199
+ "layers.24.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
200
+ "layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
201
+ "layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
202
+ "layers.24.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
203
+ "layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
204
+ "layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
205
+ "layers.25.input_layernorm.weight": "model-00005-of-00007.safetensors",
206
+ "layers.25.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
207
+ "layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
208
+ "layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
209
+ "layers.25.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
210
+ "layers.25.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
211
+ "layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
212
+ "layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
213
+ "layers.25.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
214
+ "layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
215
+ "layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
216
+ "layers.26.input_layernorm.weight": "model-00005-of-00007.safetensors",
217
+ "layers.26.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
218
+ "layers.26.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
219
+ "layers.26.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
220
+ "layers.26.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
221
+ "layers.26.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
222
+ "layers.26.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
223
+ "layers.26.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
224
+ "layers.26.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
225
+ "layers.26.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
226
+ "layers.26.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
227
+ "layers.27.input_layernorm.weight": "model-00005-of-00007.safetensors",
228
+ "layers.27.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
229
+ "layers.27.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
230
+ "layers.27.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
231
+ "layers.27.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
232
+ "layers.27.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
233
+ "layers.27.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
234
+ "layers.27.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
235
+ "layers.27.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
236
+ "layers.27.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
237
+ "layers.27.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
238
+ "layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
239
+ "layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
240
+ "layers.28.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
241
+ "layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
242
+ "layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
243
+ "layers.28.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
244
+ "layers.28.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
245
+ "layers.28.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
246
+ "layers.28.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
247
+ "layers.28.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
248
+ "layers.28.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
249
+ "layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
250
+ "layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
251
+ "layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
252
+ "layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
253
+ "layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
254
+ "layers.29.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
255
+ "layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
256
+ "layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
257
+ "layers.29.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
258
+ "layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
259
+ "layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "layers.3.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
266
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
267
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
268
+ "layers.3.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
269
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
271
+ "layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
272
+ "layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
273
+ "layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
274
+ "layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
275
+ "layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
276
+ "layers.30.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
277
+ "layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
278
+ "layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
279
+ "layers.30.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
280
+ "layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
281
+ "layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
282
+ "layers.31.input_layernorm.weight": "model-00006-of-00007.safetensors",
283
+ "layers.31.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
284
+ "layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
285
+ "layers.31.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
286
+ "layers.31.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
287
+ "layers.31.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
288
+ "layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
289
+ "layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
290
+ "layers.31.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
291
+ "layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
292
+ "layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
293
+ "layers.32.input_layernorm.weight": "model-00006-of-00007.safetensors",
294
+ "layers.32.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
295
+ "layers.32.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
296
+ "layers.32.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
297
+ "layers.32.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
298
+ "layers.32.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
299
+ "layers.32.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
300
+ "layers.32.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
301
+ "layers.32.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
302
+ "layers.32.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
303
+ "layers.32.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
304
+ "layers.33.input_layernorm.weight": "model-00006-of-00007.safetensors",
305
+ "layers.33.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
306
+ "layers.33.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
307
+ "layers.33.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
308
+ "layers.33.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
309
+ "layers.33.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
310
+ "layers.33.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
311
+ "layers.33.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
312
+ "layers.33.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
313
+ "layers.33.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
314
+ "layers.33.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
315
+ "layers.34.input_layernorm.weight": "model-00007-of-00007.safetensors",
316
+ "layers.34.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
317
+ "layers.34.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
318
+ "layers.34.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
319
+ "layers.34.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
320
+ "layers.34.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
321
+ "layers.34.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
322
+ "layers.34.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
323
+ "layers.34.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
324
+ "layers.34.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
325
+ "layers.34.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
326
+ "layers.35.input_layernorm.weight": "model-00007-of-00007.safetensors",
327
+ "layers.35.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
328
+ "layers.35.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
329
+ "layers.35.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
330
+ "layers.35.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
331
+ "layers.35.self_attn.k_norm.weight": "model-00007-of-00007.safetensors",
332
+ "layers.35.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
333
+ "layers.35.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
334
+ "layers.35.self_attn.q_norm.weight": "model-00007-of-00007.safetensors",
335
+ "layers.35.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
336
+ "layers.35.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
337
+ "layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
338
+ "layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
339
+ "layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
340
+ "layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
341
+ "layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
342
+ "layers.4.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
343
+ "layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
344
+ "layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
345
+ "layers.4.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
346
+ "layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
347
+ "layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
348
+ "layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
349
+ "layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
350
+ "layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
351
+ "layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
352
+ "layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
353
+ "layers.5.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
354
+ "layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
355
+ "layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
356
+ "layers.5.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
357
+ "layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
358
+ "layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
359
+ "layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
360
+ "layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
361
+ "layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
362
+ "layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
363
+ "layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
364
+ "layers.6.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
365
+ "layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
366
+ "layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
367
+ "layers.6.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
368
+ "layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
369
+ "layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
370
+ "layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
371
+ "layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
372
+ "layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
373
+ "layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
374
+ "layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
375
+ "layers.7.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
376
+ "layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
377
+ "layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
378
+ "layers.7.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
379
+ "layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
380
+ "layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
381
+ "layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
382
+ "layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
383
+ "layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
384
+ "layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
385
+ "layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
386
+ "layers.8.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
387
+ "layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
388
+ "layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
389
+ "layers.8.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
390
+ "layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
391
+ "layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
392
+ "layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
393
+ "layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
394
+ "layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
395
+ "layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
396
+ "layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
397
+ "layers.9.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
398
+ "layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
399
+ "layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
400
+ "layers.9.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
401
+ "layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
402
+ "layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
403
+ "norm.weight": "model-00007-of-00007.safetensors"
404
+ }
405
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
search_results/examples/EVAL/eval_results.json ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "earth_science-examples": {
3
+ "ndcg_at_1": 0.57759,
4
+ "ndcg_at_10": 0.55426,
5
+ "ndcg_at_100": 0.64815,
6
+ "map_at_1": 0.23269,
7
+ "map_at_10": 0.44959,
8
+ "map_at_100": 0.49319,
9
+ "recall_at_1": 0.23269,
10
+ "recall_at_10": 0.58342,
11
+ "recall_at_100": 0.87067,
12
+ "precision_at_1": 0.57759,
13
+ "precision_at_10": 0.2181,
14
+ "precision_at_100": 0.03966,
15
+ "mrr_at_1": 0.57759,
16
+ "mrr_at_10": 0.67135,
17
+ "mrr_at_100": 0.67713
18
+ },
19
+ "theoremqa_questions-examples": {
20
+ "ndcg_at_1": 0.39691,
21
+ "ndcg_at_10": 0.4124,
22
+ "ndcg_at_100": 0.45757,
23
+ "map_at_1": 0.22809,
24
+ "map_at_10": 0.37578,
25
+ "map_at_100": 0.38535,
26
+ "recall_at_1": 0.22809,
27
+ "recall_at_10": 0.45814,
28
+ "recall_at_100": 0.64633,
29
+ "precision_at_1": 0.39691,
30
+ "precision_at_10": 0.09639,
31
+ "precision_at_100": 0.01309,
32
+ "mrr_at_1": 0.39691,
33
+ "mrr_at_10": 0.43798,
34
+ "mrr_at_100": 0.44688
35
+ },
36
+ "pony-examples": {
37
+ "ndcg_at_1": 0.24107,
38
+ "ndcg_at_10": 0.18695,
39
+ "ndcg_at_100": 0.27913,
40
+ "map_at_1": 0.0161,
41
+ "map_at_10": 0.05544,
42
+ "map_at_100": 0.09322,
43
+ "recall_at_1": 0.0161,
44
+ "recall_at_10": 0.09518,
45
+ "recall_at_100": 0.38397,
46
+ "precision_at_1": 0.24107,
47
+ "precision_at_10": 0.16696,
48
+ "precision_at_100": 0.07187,
49
+ "mrr_at_1": 0.24107,
50
+ "mrr_at_10": 0.37267,
51
+ "mrr_at_100": 0.38838
52
+ },
53
+ "robotics-examples": {
54
+ "ndcg_at_1": 0.28713,
55
+ "ndcg_at_10": 0.31993,
56
+ "ndcg_at_100": 0.40945,
57
+ "map_at_1": 0.14029,
58
+ "map_at_10": 0.23822,
59
+ "map_at_100": 0.26881,
60
+ "recall_at_1": 0.14029,
61
+ "recall_at_10": 0.37368,
62
+ "recall_at_100": 0.708,
63
+ "precision_at_1": 0.28713,
64
+ "precision_at_10": 0.11386,
65
+ "precision_at_100": 0.0298,
66
+ "mrr_at_1": 0.28713,
67
+ "mrr_at_10": 0.37628,
68
+ "mrr_at_100": 0.38883
69
+ },
70
+ "aops-examples": {
71
+ "ndcg_at_1": 0.13514,
72
+ "ndcg_at_10": 0.13305,
73
+ "ndcg_at_100": 0.21311,
74
+ "map_at_1": 0.03062,
75
+ "map_at_10": 0.07937,
76
+ "map_at_100": 0.10056,
77
+ "recall_at_1": 0.03062,
78
+ "recall_at_10": 0.1598,
79
+ "recall_at_100": 0.39924,
80
+ "precision_at_1": 0.13514,
81
+ "precision_at_10": 0.07207,
82
+ "precision_at_100": 0.01946,
83
+ "mrr_at_1": 0.13514,
84
+ "mrr_at_10": 0.20256,
85
+ "mrr_at_100": 0.21432
86
+ },
87
+ "sustainable_living-examples": {
88
+ "ndcg_at_1": 0.35185,
89
+ "ndcg_at_10": 0.37341,
90
+ "ndcg_at_100": 0.48528,
91
+ "map_at_1": 0.13027,
92
+ "map_at_10": 0.27505,
93
+ "map_at_100": 0.32648,
94
+ "recall_at_1": 0.13027,
95
+ "recall_at_10": 0.45011,
96
+ "recall_at_100": 0.80612,
97
+ "precision_at_1": 0.35185,
98
+ "precision_at_10": 0.16019,
99
+ "precision_at_100": 0.0375,
100
+ "mrr_at_1": 0.35185,
101
+ "mrr_at_10": 0.43959,
102
+ "mrr_at_100": 0.4535
103
+ },
104
+ "leetcode-examples": {
105
+ "ndcg_at_1": 0.28169,
106
+ "ndcg_at_10": 0.32309,
107
+ "ndcg_at_100": 0.38938,
108
+ "map_at_1": 0.17535,
109
+ "map_at_10": 0.25267,
110
+ "map_at_100": 0.26771,
111
+ "recall_at_1": 0.17535,
112
+ "recall_at_10": 0.41808,
113
+ "recall_at_100": 0.69519,
114
+ "precision_at_1": 0.28169,
115
+ "precision_at_10": 0.07254,
116
+ "precision_at_100": 0.01254,
117
+ "mrr_at_1": 0.28169,
118
+ "mrr_at_10": 0.37478,
119
+ "mrr_at_100": 0.38255
120
+ },
121
+ "economics-examples": {
122
+ "ndcg_at_1": 0.29126,
123
+ "ndcg_at_10": 0.33832,
124
+ "ndcg_at_100": 0.43577,
125
+ "map_at_1": 0.13804,
126
+ "map_at_10": 0.23934,
127
+ "map_at_100": 0.29841,
128
+ "recall_at_1": 0.13804,
129
+ "recall_at_10": 0.35798,
130
+ "recall_at_100": 0.72009,
131
+ "precision_at_1": 0.29126,
132
+ "precision_at_10": 0.15049,
133
+ "precision_at_100": 0.04738,
134
+ "mrr_at_1": 0.29126,
135
+ "mrr_at_10": 0.37666,
136
+ "mrr_at_100": 0.38917
137
+ },
138
+ "stackoverflow-examples": {
139
+ "ndcg_at_1": 0.30769,
140
+ "ndcg_at_10": 0.34329,
141
+ "ndcg_at_100": 0.44943,
142
+ "map_at_1": 0.12812,
143
+ "map_at_10": 0.26281,
144
+ "map_at_100": 0.30158,
145
+ "recall_at_1": 0.12812,
146
+ "recall_at_10": 0.43316,
147
+ "recall_at_100": 0.77889,
148
+ "precision_at_1": 0.30769,
149
+ "precision_at_10": 0.12222,
150
+ "precision_at_100": 0.03265,
151
+ "mrr_at_1": 0.2906,
152
+ "mrr_at_10": 0.3824,
153
+ "mrr_at_100": 0.39268
154
+ },
155
+ "biology-examples": {
156
+ "ndcg_at_1": 0.50485,
157
+ "ndcg_at_10": 0.54407,
158
+ "ndcg_at_100": 0.62536,
159
+ "map_at_1": 0.16222,
160
+ "map_at_10": 0.43293,
161
+ "map_at_100": 0.46687,
162
+ "recall_at_1": 0.16222,
163
+ "recall_at_10": 0.63582,
164
+ "recall_at_100": 0.91484,
165
+ "precision_at_1": 0.50485,
166
+ "precision_at_10": 0.22524,
167
+ "precision_at_100": 0.03301,
168
+ "mrr_at_1": 0.49515,
169
+ "mrr_at_10": 0.61066,
170
+ "mrr_at_100": 0.61562
171
+ },
172
+ "theoremqa_theorems-examples": {
173
+ "ndcg_at_1": 0.34211,
174
+ "ndcg_at_10": 0.47592,
175
+ "ndcg_at_100": 0.54161,
176
+ "map_at_1": 0.18499,
177
+ "map_at_10": 0.39117,
178
+ "map_at_100": 0.41019,
179
+ "recall_at_1": 0.18499,
180
+ "recall_at_10": 0.65116,
181
+ "recall_at_100": 0.89583,
182
+ "precision_at_1": 0.34211,
183
+ "precision_at_10": 0.11974,
184
+ "precision_at_100": 0.01763,
185
+ "mrr_at_1": 0.34211,
186
+ "mrr_at_10": 0.45854,
187
+ "mrr_at_100": 0.46713
188
+ },
189
+ "psychology-examples": {
190
+ "ndcg_at_1": 0.36634,
191
+ "ndcg_at_10": 0.45155,
192
+ "ndcg_at_100": 0.52282,
193
+ "map_at_1": 0.16264,
194
+ "map_at_10": 0.33572,
195
+ "map_at_100": 0.38264,
196
+ "recall_at_1": 0.16264,
197
+ "recall_at_10": 0.52951,
198
+ "recall_at_100": 0.8142,
199
+ "precision_at_1": 0.36634,
200
+ "precision_at_10": 0.19406,
201
+ "precision_at_100": 0.04168,
202
+ "mrr_at_1": 0.36634,
203
+ "mrr_at_10": 0.47711,
204
+ "mrr_at_100": 0.48678
205
+ }
206
+ }
search_results/examples/aops-examples.json ADDED
The diff for this file is too large to render. See raw diff
 
search_results/examples/biology-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ead63978ceaeaa9ca7e7cf76464526d81ec047109cabad6504da5a95640e84a
3
+ size 16553924
search_results/examples/earth_science-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b95f0afc233ab8cf863c35c04e32196626de3dc0ff07dff4c8870d27f5636e56
3
+ size 18149221
search_results/examples/economics-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcac89b03a3b96e453a89aef3f900f5d6bb24cc25ccf6511505205ec85bbac01
3
+ size 16603020
search_results/examples/leetcode-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8249e274e39aee71f58c32c5b51c0c2829e2f8d1f53f590ef3baa217f94b0725
3
+ size 18343911
search_results/examples/pony-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ac2ed1eb076819107e71f5f9599910a3979dea760573670146cb428bee09feb
3
+ size 14638419
search_results/examples/psychology-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab7aafa65d1315d0c4343b7cdd79af81a7efefb89f3bdac43358cb91ac16ca8c
3
+ size 15426558
search_results/examples/robotics-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6988daa347380112bf9946b28bbd8c79eb31700392ea515c04e4e1a9e7c7232
3
+ size 14420958
search_results/examples/stackoverflow-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db846b983ed8559a381e46947319ecc33c1439212b8961c87771cb6f1e71cee6
3
+ size 19083238
search_results/examples/sustainable_living-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d6ed4c57913ba4e7cf5080a09748891c0a5ecb4b9e310a4bf6de109170f2605
3
+ size 17535724
search_results/examples/theoremqa_questions-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c92a819c01d84eaa07822693f1a5e0f016073ea86d21c37b964615216f2aacd
3
+ size 14691895
search_results/examples/theoremqa_theorems-examples.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4689bbafe5096d0a16cf2849ede8c67a98d4925bde8eba491f4a6839b1954fc6
3
+ size 11423803
tokenizer_config.json ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<tool_response>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "151666": {
191
+ "content": "</tool_response>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "151667": {
199
+ "content": "<think>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "151668": {
207
+ "content": "</think>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ }
214
+ },
215
+ "additional_special_tokens": [
216
+ "<|im_start|>",
217
+ "<|im_end|>",
218
+ "<|object_ref_start|>",
219
+ "<|object_ref_end|>",
220
+ "<|box_start|>",
221
+ "<|box_end|>",
222
+ "<|quad_start|>",
223
+ "<|quad_end|>",
224
+ "<|vision_start|>",
225
+ "<|vision_end|>",
226
+ "<|vision_pad|>",
227
+ "<|image_pad|>",
228
+ "<|video_pad|>"
229
+ ],
230
+ "bos_token": null,
231
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
232
+ "clean_up_tokenization_spaces": false,
233
+ "eos_token": "<|im_end|>",
234
+ "errors": "replace",
235
+ "extra_special_tokens": {},
236
+ "max_length": 512,
237
+ "model_max_length": 131072,
238
+ "pad_token": "<|endoftext|>",
239
+ "split_special_tokens": false,
240
+ "stride": 0,
241
+ "tokenizer_class": "Qwen2Tokenizer",
242
+ "truncation_side": "right",
243
+ "truncation_strategy": "longest_first",
244
+ "unk_token": null
245
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff