Upload folder using huggingface_hub
Browse files- .gitattributes +12 -0
- 1_Pooling/config.json +10 -0
- README.md +182 -0
- added_tokens.json +28 -0
- config.json +30 -0
- config_sentence_transformers.json +8 -0
- evaluation_scripts/eval_bright_short.sh +49 -0
- imgs/bright-performance.png +3 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +405 -0
- modules.json +14 -0
- search_results/examples/EVAL/eval_results.json +206 -0
- search_results/examples/aops-examples.json +0 -0
- search_results/examples/biology-examples.json +3 -0
- search_results/examples/earth_science-examples.json +3 -0
- search_results/examples/economics-examples.json +3 -0
- search_results/examples/leetcode-examples.json +3 -0
- search_results/examples/pony-examples.json +3 -0
- search_results/examples/psychology-examples.json +3 -0
- search_results/examples/robotics-examples.json +3 -0
- search_results/examples/stackoverflow-examples.json +3 -0
- search_results/examples/sustainable_living-examples.json +3 -0
- search_results/examples/theoremqa_questions-examples.json +3 -0
- search_results/examples/theoremqa_theorems-examples.json +0 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +245 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
imgs/bright-performance.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
search_results/examples/biology-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
search_results/examples/earth_science-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
search_results/examples/economics-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
search_results/examples/leetcode-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
search_results/examples/pony-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
search_results/examples/psychology-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
search_results/examples/robotics-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
search_results/examples/stackoverflow-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
search_results/examples/sustainable_living-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
search_results/examples/theoremqa_questions-examples.json filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 4096,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": true,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- feature-extraction
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- transformers
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
<div align="center">
|
| 12 |
+
<h1> ReasonEmbed: Enhanced Text Embeddings for Reasoning-Intensive Document Retrieval </h1>
|
| 13 |
+
</div>
|
| 14 |
+
|
| 15 |
+
<p align="center">
|
| 16 |
+
<a href="https://arxiv.org/abs/2510.08252" target="_blank" rel="noopener noreferrer">
|
| 17 |
+
<img src="https://img.shields.io/badge/arXiv-2510.08252-B31B1B.svg?style=flat-square&logo=arxiv&logoColor=white" alt="arXiv:2510.08252">
|
| 18 |
+
</a>
|
| 19 |
+
</p>
|
| 20 |
+
|
| 21 |
+
We propose **ReasonEmbed**, a new text embedding model for reasoning-intensive document retrieval based on innovations of how synthetic data is generated and used. For more details please refer to our Github: [ReasonEmbed](https://github.com/VectorSpaceLab/agentic-search/tree/main/ReasonEmbed) and our [paper](https://arxiv.org/abs/2510.08252).
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
## Introduction
|
| 25 |
+
|
| 26 |
+
This repository hosts the model **reason-embed-basic-qwen3-8b-0928**, which is fine-tuned based on [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) using the basic InfoNCE loss on our synthetic dataset. It achieves an nDCG@10 of 37.1 on the [BRIGHT](https://brightbenchmark.github.io/) benchmark with original query, demonstrating its strong capability in reasoning-intensive retrieval tasks.
|
| 27 |
+
|
| 28 |
+
The search results on BRIGHT are available [here](./search_results/examples/). We also provide the evaluation [script](./evaluation_scripts/eval_bright_short.sh) to reproduce the results.
|
| 29 |
+
|
| 30 |
+

|
| 31 |
+
|
| 32 |
+
## Usage
|
| 33 |
+
|
| 34 |
+
### Using FlagEmbedding
|
| 35 |
+
```
|
| 36 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
| 37 |
+
cd FlagEmbedding
|
| 38 |
+
pip install -e .
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
from FlagEmbedding import FlagLLMModel
|
| 43 |
+
queries = [
|
| 44 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
|
| 45 |
+
"Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
|
| 46 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
|
| 47 |
+
"Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
|
| 48 |
+
]
|
| 49 |
+
documents = [
|
| 50 |
+
# taken from BRIGHT TheoT dataset, docid: 2723
|
| 51 |
+
"\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
|
| 52 |
+
# taken from BRIGHT TheoT dataset, docid: 14101
|
| 53 |
+
"\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
|
| 54 |
+
]
|
| 55 |
+
model = FlagLLMModel("hanhainebula/reason-embed-basic-qwen3-8b-0928",
|
| 56 |
+
query_instruction_for_retrieval="Given a Math problem, retrieve relevant theorems that help answer the problem.",
|
| 57 |
+
query_instruction_format="Instruct: {}\nQuery: {}",
|
| 58 |
+
devices="cuda:0", # set devices to "cuda:0" for testing on a single GPU
|
| 59 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 60 |
+
embeddings_1 = model.encode_queries(queries)
|
| 61 |
+
embeddings_2 = model.encode_corpus(documents)
|
| 62 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 63 |
+
print(similarity)
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
### Using Sentence Transformers
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from sentence_transformers import SentenceTransformer
|
| 71 |
+
import torch
|
| 72 |
+
|
| 73 |
+
# Load the model, optionally in float16 precision for faster inference
|
| 74 |
+
model = SentenceTransformer("hanhainebula/reason-embed-basic-qwen3-8b-0928", model_kwargs={"torch_dtype": torch.float16})
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
queries = [
|
| 78 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
|
| 79 |
+
"Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
|
| 80 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
|
| 81 |
+
"Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
|
| 82 |
+
]
|
| 83 |
+
documents = [
|
| 84 |
+
# taken from BRIGHT TheoT dataset, docid: 2723
|
| 85 |
+
"\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
|
| 86 |
+
# taken from BRIGHT TheoT dataset, docid: 14101
|
| 87 |
+
"\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
query_embeddings = model.encode(queries, prompt="Instruct: Given a Math problem, retrieve relevant theorems that help answer the problem.\nQuery: ")
|
| 91 |
+
document_embeddings = model.encode(documents)
|
| 92 |
+
|
| 93 |
+
# Compute the (cosine) similarity between the query and document embeddings
|
| 94 |
+
similarity = model.similarity(query_embeddings, document_embeddings)
|
| 95 |
+
print(similarity)
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
### Using HuggingFace Transformers
|
| 100 |
+
```python
|
| 101 |
+
import torch
|
| 102 |
+
import torch.nn.functional as F
|
| 103 |
+
|
| 104 |
+
from torch import Tensor
|
| 105 |
+
from transformers import AutoTokenizer, AutoModel
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def last_token_pool(last_hidden_states: Tensor,
|
| 109 |
+
attention_mask: Tensor) -> Tensor:
|
| 110 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 111 |
+
if left_padding:
|
| 112 |
+
return last_hidden_states[:, -1]
|
| 113 |
+
else:
|
| 114 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 115 |
+
batch_size = last_hidden_states.shape[0]
|
| 116 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
| 120 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def tokenize_texts(tokenizer, texts, max_length: int, device: str):
|
| 124 |
+
batch_dict = tokenizer(texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8)
|
| 125 |
+
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
| 126 |
+
return batch_dict
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
task = 'Given a Math problem, retrieve relevant theorems that help answer the problem.'
|
| 130 |
+
queries = [
|
| 131 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
|
| 132 |
+
"Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
|
| 133 |
+
# taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
|
| 134 |
+
"Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
|
| 135 |
+
]
|
| 136 |
+
queries = [get_detailed_instruct(task, q) for q in queries]
|
| 137 |
+
documents = [
|
| 138 |
+
# taken from BRIGHT TheoT dataset, docid: 2723
|
| 139 |
+
"\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
|
| 140 |
+
# taken from BRIGHT TheoT dataset, docid: 14101
|
| 141 |
+
"\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
tokenizer = AutoTokenizer.from_pretrained("hanhainebula/reason-embed-basic-qwen3-8b-0928")
|
| 145 |
+
model = AutoModel.from_pretrained("hanhainebula/reason-embed-basic-qwen3-8b-0928")
|
| 146 |
+
model.eval()
|
| 147 |
+
|
| 148 |
+
device = "cuda:0" # set device to "cuda:0" for testing on a single GPU
|
| 149 |
+
model.to(device)
|
| 150 |
+
model.half()
|
| 151 |
+
|
| 152 |
+
max_length = 512
|
| 153 |
+
# Tokenize the input texts
|
| 154 |
+
query_batch_dict = tokenize_texts(tokenizer, queries, max_length, device)
|
| 155 |
+
doc_batch_dict = tokenize_texts(tokenizer, documents, max_length, device)
|
| 156 |
+
|
| 157 |
+
with torch.no_grad():
|
| 158 |
+
query_outputs = model(**query_batch_dict)
|
| 159 |
+
query_embeddings = last_token_pool(query_outputs.last_hidden_state, query_batch_dict['attention_mask'])
|
| 160 |
+
|
| 161 |
+
doc_outputs = model(**doc_batch_dict)
|
| 162 |
+
doc_embeddings = last_token_pool(doc_outputs.last_hidden_state, doc_batch_dict['attention_mask'])
|
| 163 |
+
|
| 164 |
+
# normalize embeddings
|
| 165 |
+
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
| 166 |
+
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
| 167 |
+
scores = (query_embeddings @ doc_embeddings.T) * 100
|
| 168 |
+
print(scores.cpu().tolist())
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
## Citation
|
| 173 |
+
|
| 174 |
+
If you find this repository useful, please consider giving a star ⭐ and citation:
|
| 175 |
+
```
|
| 176 |
+
@article{chen2025reasonembed,
|
| 177 |
+
title={ReasonEmbed: Enhanced Text Embeddings for Reasoning-Intensive Document Retrieval},
|
| 178 |
+
author={Chen, Jianlyu and Lan, Junwei and Li, Chaofan and Lian, Defu and Liu, Zheng},
|
| 179 |
+
journal={arXiv preprint arXiv:2510.08252},
|
| 180 |
+
year={2025}
|
| 181 |
+
}
|
| 182 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3Model"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 4096,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 12288,
|
| 14 |
+
"max_position_embeddings": 40960,
|
| 15 |
+
"max_window_layers": 36,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 32,
|
| 18 |
+
"num_hidden_layers": 36,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 1000000,
|
| 23 |
+
"sliding_window": null,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.1",
|
| 27 |
+
"use_cache": false,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"prompts": {
|
| 3 |
+
"query": "Instruct: Given a query, retrieve documents that can help answer the query.\nQuery: ",
|
| 4 |
+
"document": ""
|
| 5 |
+
},
|
| 6 |
+
"default_prompt_name": null,
|
| 7 |
+
"similarity_fn_name": "cosine"
|
| 8 |
+
}
|
evaluation_scripts/eval_bright_short.sh
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if [ -z "$HF_HUB_CACHE" ]; then
|
| 2 |
+
export HF_HUB_CACHE="$HOME/.cache/huggingface/hub"
|
| 3 |
+
fi
|
| 4 |
+
|
| 5 |
+
# full datasets
|
| 6 |
+
dataset_names="biology earth_science economics psychology robotics stackoverflow sustainable_living leetcode pony aops theoremqa_questions theoremqa_theorems"
|
| 7 |
+
|
| 8 |
+
model_args="\
|
| 9 |
+
--embedder_name_or_path hanhainebula/reason-embed-basic-qwen3-8b-0928 \
|
| 10 |
+
--embedder_model_class decoder-only-base \
|
| 11 |
+
--query_instruction_format_for_retrieval 'Instruct: {}\nQuery: {}' \
|
| 12 |
+
--pooling_method last_token \
|
| 13 |
+
--devices cuda:0 cuda:1 cuda:2 cuda:3 cuda:4 cuda:5 cuda:6 cuda:7 \
|
| 14 |
+
--cache_dir $HF_HUB_CACHE \
|
| 15 |
+
--embedder_batch_size 8 \
|
| 16 |
+
--embedder_query_max_length 8192 \
|
| 17 |
+
--embedder_passage_max_length 8192 \
|
| 18 |
+
"
|
| 19 |
+
|
| 20 |
+
split_list=("examples" "gpt4_reason")
|
| 21 |
+
|
| 22 |
+
for split in "${split_list[@]}"; do
|
| 23 |
+
eval_args="\
|
| 24 |
+
--task_type short \
|
| 25 |
+
--use_special_instructions True \
|
| 26 |
+
--eval_name bright_short \
|
| 27 |
+
--dataset_dir ./bright_short/data \
|
| 28 |
+
--dataset_names $dataset_names \
|
| 29 |
+
--splits $split \
|
| 30 |
+
--corpus_embd_save_dir ./bright_short/corpus_embd \
|
| 31 |
+
--output_dir ./bright_short/search_results/$split \
|
| 32 |
+
--search_top_k 2000 \
|
| 33 |
+
--cache_path $HF_HUB_CACHE \
|
| 34 |
+
--overwrite False \
|
| 35 |
+
--k_values 1 10 100 \
|
| 36 |
+
--eval_output_method markdown \
|
| 37 |
+
--eval_output_path ./bright_short/eval_results_$split.md \
|
| 38 |
+
--eval_metrics ndcg_at_10 recall_at_10 recall_at_100 \
|
| 39 |
+
"
|
| 40 |
+
|
| 41 |
+
cmd="python -m FlagEmbedding.evaluation.bright \
|
| 42 |
+
$eval_args \
|
| 43 |
+
$model_args \
|
| 44 |
+
"
|
| 45 |
+
|
| 46 |
+
echo $cmd
|
| 47 |
+
eval $cmd
|
| 48 |
+
|
| 49 |
+
done
|
imgs/bright-performance.png
ADDED
|
Git LFS Details
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23735afff7b5c593498770ad7aae03015c654b15704b3b96ff6942749fb1db90
|
| 3 |
+
size 4972454136
|
model-00002-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:445fa2ef4c1a6e1017c065b81d7f093d1e2bd0c38fbcbf66d9eb103110cba7eb
|
| 3 |
+
size 4832048200
|
model-00003-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:116e3da92c066e1882e1542ac6f6bee5c6ed5d7c7628370ef20cdc7f14bda11e
|
| 3 |
+
size 4832048248
|
model-00004-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:acc49af2f5ef9bb6110d36d283985b09dce57e84f18b16e77e57083959c1518d
|
| 3 |
+
size 4999855080
|
model-00005-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:493967c31db9e3797c6fd5fc333594d72f0d620c8834e7d67b96f51026b499a7
|
| 3 |
+
size 4832048272
|
model-00006-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a7d880cb754b2e9eb5bfde7f6e5a4d20a499aeea9b6c5626777cfd3329ca407
|
| 3 |
+
size 4832048264
|
model-00007-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48ae6a7506557bd220521094305cb815782bea7bcc9721db8aa38719330bede4
|
| 3 |
+
size 973163080
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 30273622016
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"embed_tokens.weight": "model-00001-of-00007.safetensors",
|
| 7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
| 9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
| 10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
| 11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 12 |
+
"layers.0.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
|
| 13 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 14 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
| 15 |
+
"layers.0.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
|
| 16 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 17 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 18 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 19 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
| 20 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
| 21 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
| 22 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 23 |
+
"layers.1.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
|
| 24 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 25 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
| 26 |
+
"layers.1.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
|
| 27 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 28 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 29 |
+
"layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 30 |
+
"layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 31 |
+
"layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 32 |
+
"layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 33 |
+
"layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 34 |
+
"layers.10.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 35 |
+
"layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 36 |
+
"layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 37 |
+
"layers.10.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 38 |
+
"layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 39 |
+
"layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 40 |
+
"layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 41 |
+
"layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 42 |
+
"layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 43 |
+
"layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 44 |
+
"layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 45 |
+
"layers.11.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 46 |
+
"layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 47 |
+
"layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 48 |
+
"layers.11.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 49 |
+
"layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 50 |
+
"layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 51 |
+
"layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 52 |
+
"layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 53 |
+
"layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 54 |
+
"layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 55 |
+
"layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 56 |
+
"layers.12.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 57 |
+
"layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 58 |
+
"layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 59 |
+
"layers.12.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 60 |
+
"layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 61 |
+
"layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 62 |
+
"layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 63 |
+
"layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 64 |
+
"layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 65 |
+
"layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 66 |
+
"layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 67 |
+
"layers.13.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 68 |
+
"layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 69 |
+
"layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 70 |
+
"layers.13.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 71 |
+
"layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 72 |
+
"layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 73 |
+
"layers.14.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 74 |
+
"layers.14.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 75 |
+
"layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 76 |
+
"layers.14.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 77 |
+
"layers.14.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 78 |
+
"layers.14.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 79 |
+
"layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 80 |
+
"layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 81 |
+
"layers.14.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 82 |
+
"layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 83 |
+
"layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 84 |
+
"layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 85 |
+
"layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 86 |
+
"layers.15.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
| 87 |
+
"layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 88 |
+
"layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 89 |
+
"layers.15.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
|
| 90 |
+
"layers.15.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 91 |
+
"layers.15.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
| 92 |
+
"layers.15.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
|
| 93 |
+
"layers.15.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 94 |
+
"layers.15.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 95 |
+
"layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 96 |
+
"layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 97 |
+
"layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 98 |
+
"layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 99 |
+
"layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 100 |
+
"layers.16.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 101 |
+
"layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 102 |
+
"layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 103 |
+
"layers.16.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 104 |
+
"layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 105 |
+
"layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 106 |
+
"layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 107 |
+
"layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 108 |
+
"layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 109 |
+
"layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 110 |
+
"layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 111 |
+
"layers.17.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 112 |
+
"layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 113 |
+
"layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 114 |
+
"layers.17.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 115 |
+
"layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 116 |
+
"layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 117 |
+
"layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 118 |
+
"layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 119 |
+
"layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 120 |
+
"layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 121 |
+
"layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 122 |
+
"layers.18.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 123 |
+
"layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 124 |
+
"layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 125 |
+
"layers.18.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 126 |
+
"layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 127 |
+
"layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 128 |
+
"layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 129 |
+
"layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 130 |
+
"layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 131 |
+
"layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 132 |
+
"layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 133 |
+
"layers.19.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 134 |
+
"layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 135 |
+
"layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 136 |
+
"layers.19.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 137 |
+
"layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 138 |
+
"layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 139 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 140 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
| 141 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
| 142 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
| 143 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
| 144 |
+
"layers.2.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
|
| 145 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 146 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
| 147 |
+
"layers.2.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
|
| 148 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 149 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 150 |
+
"layers.20.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 151 |
+
"layers.20.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 152 |
+
"layers.20.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 153 |
+
"layers.20.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 154 |
+
"layers.20.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 155 |
+
"layers.20.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 156 |
+
"layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 157 |
+
"layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 158 |
+
"layers.20.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 159 |
+
"layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 160 |
+
"layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 161 |
+
"layers.21.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 162 |
+
"layers.21.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
| 163 |
+
"layers.21.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
| 164 |
+
"layers.21.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
| 165 |
+
"layers.21.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
| 166 |
+
"layers.21.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 167 |
+
"layers.21.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 168 |
+
"layers.21.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 169 |
+
"layers.21.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 170 |
+
"layers.21.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 171 |
+
"layers.21.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 172 |
+
"layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 173 |
+
"layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 174 |
+
"layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 175 |
+
"layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 176 |
+
"layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 177 |
+
"layers.22.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
|
| 178 |
+
"layers.22.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 179 |
+
"layers.22.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
| 180 |
+
"layers.22.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
|
| 181 |
+
"layers.22.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 182 |
+
"layers.22.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 183 |
+
"layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 184 |
+
"layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 185 |
+
"layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 186 |
+
"layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 187 |
+
"layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 188 |
+
"layers.23.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 189 |
+
"layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 190 |
+
"layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 191 |
+
"layers.23.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 192 |
+
"layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 193 |
+
"layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 194 |
+
"layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 195 |
+
"layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 196 |
+
"layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 197 |
+
"layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 198 |
+
"layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 199 |
+
"layers.24.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 200 |
+
"layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 201 |
+
"layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 202 |
+
"layers.24.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 203 |
+
"layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 204 |
+
"layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 205 |
+
"layers.25.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 206 |
+
"layers.25.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 207 |
+
"layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 208 |
+
"layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 209 |
+
"layers.25.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 210 |
+
"layers.25.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 211 |
+
"layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 212 |
+
"layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 213 |
+
"layers.25.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 214 |
+
"layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 215 |
+
"layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 216 |
+
"layers.26.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 217 |
+
"layers.26.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 218 |
+
"layers.26.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 219 |
+
"layers.26.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 220 |
+
"layers.26.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 221 |
+
"layers.26.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 222 |
+
"layers.26.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 223 |
+
"layers.26.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 224 |
+
"layers.26.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 225 |
+
"layers.26.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 226 |
+
"layers.26.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 227 |
+
"layers.27.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 228 |
+
"layers.27.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
| 229 |
+
"layers.27.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 230 |
+
"layers.27.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
| 231 |
+
"layers.27.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
| 232 |
+
"layers.27.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 233 |
+
"layers.27.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 234 |
+
"layers.27.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 235 |
+
"layers.27.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 236 |
+
"layers.27.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 237 |
+
"layers.27.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 238 |
+
"layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 239 |
+
"layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 240 |
+
"layers.28.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
| 241 |
+
"layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 242 |
+
"layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 243 |
+
"layers.28.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
|
| 244 |
+
"layers.28.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 245 |
+
"layers.28.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
| 246 |
+
"layers.28.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
|
| 247 |
+
"layers.28.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 248 |
+
"layers.28.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 249 |
+
"layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 250 |
+
"layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 251 |
+
"layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 252 |
+
"layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 253 |
+
"layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 254 |
+
"layers.29.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 255 |
+
"layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 256 |
+
"layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 257 |
+
"layers.29.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 258 |
+
"layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 259 |
+
"layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 260 |
+
"layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 261 |
+
"layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 262 |
+
"layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 263 |
+
"layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 264 |
+
"layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 265 |
+
"layers.3.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
|
| 266 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 267 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
| 268 |
+
"layers.3.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
|
| 269 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 270 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 271 |
+
"layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 272 |
+
"layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 273 |
+
"layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 274 |
+
"layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 275 |
+
"layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 276 |
+
"layers.30.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 277 |
+
"layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 278 |
+
"layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 279 |
+
"layers.30.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 280 |
+
"layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 281 |
+
"layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 282 |
+
"layers.31.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 283 |
+
"layers.31.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 284 |
+
"layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 285 |
+
"layers.31.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 286 |
+
"layers.31.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 287 |
+
"layers.31.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 288 |
+
"layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 289 |
+
"layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 290 |
+
"layers.31.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 291 |
+
"layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 292 |
+
"layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 293 |
+
"layers.32.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 294 |
+
"layers.32.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 295 |
+
"layers.32.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 296 |
+
"layers.32.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 297 |
+
"layers.32.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 298 |
+
"layers.32.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 299 |
+
"layers.32.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 300 |
+
"layers.32.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 301 |
+
"layers.32.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 302 |
+
"layers.32.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 303 |
+
"layers.32.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 304 |
+
"layers.33.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 305 |
+
"layers.33.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
| 306 |
+
"layers.33.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 307 |
+
"layers.33.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 308 |
+
"layers.33.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
| 309 |
+
"layers.33.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 310 |
+
"layers.33.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 311 |
+
"layers.33.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 312 |
+
"layers.33.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 313 |
+
"layers.33.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 314 |
+
"layers.33.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 315 |
+
"layers.34.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
| 316 |
+
"layers.34.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
| 317 |
+
"layers.34.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
| 318 |
+
"layers.34.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
| 319 |
+
"layers.34.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
| 320 |
+
"layers.34.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
|
| 321 |
+
"layers.34.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 322 |
+
"layers.34.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
| 323 |
+
"layers.34.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
|
| 324 |
+
"layers.34.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 325 |
+
"layers.34.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 326 |
+
"layers.35.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
| 327 |
+
"layers.35.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
| 328 |
+
"layers.35.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
|
| 329 |
+
"layers.35.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
|
| 330 |
+
"layers.35.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
| 331 |
+
"layers.35.self_attn.k_norm.weight": "model-00007-of-00007.safetensors",
|
| 332 |
+
"layers.35.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
| 333 |
+
"layers.35.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
|
| 334 |
+
"layers.35.self_attn.q_norm.weight": "model-00007-of-00007.safetensors",
|
| 335 |
+
"layers.35.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
| 336 |
+
"layers.35.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
| 337 |
+
"layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 338 |
+
"layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 339 |
+
"layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 340 |
+
"layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 341 |
+
"layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 342 |
+
"layers.4.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 343 |
+
"layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 344 |
+
"layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 345 |
+
"layers.4.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 346 |
+
"layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 347 |
+
"layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 348 |
+
"layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 349 |
+
"layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 350 |
+
"layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 351 |
+
"layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 352 |
+
"layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 353 |
+
"layers.5.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 354 |
+
"layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 355 |
+
"layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 356 |
+
"layers.5.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 357 |
+
"layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 358 |
+
"layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 359 |
+
"layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 360 |
+
"layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 361 |
+
"layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 362 |
+
"layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 363 |
+
"layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 364 |
+
"layers.6.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 365 |
+
"layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 366 |
+
"layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 367 |
+
"layers.6.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 368 |
+
"layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 369 |
+
"layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 370 |
+
"layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 371 |
+
"layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 372 |
+
"layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 373 |
+
"layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 374 |
+
"layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 375 |
+
"layers.7.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 376 |
+
"layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 377 |
+
"layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 378 |
+
"layers.7.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 379 |
+
"layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 380 |
+
"layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 381 |
+
"layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 382 |
+
"layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
| 383 |
+
"layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 384 |
+
"layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
| 385 |
+
"layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
| 386 |
+
"layers.8.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 387 |
+
"layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 388 |
+
"layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 389 |
+
"layers.8.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 390 |
+
"layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 391 |
+
"layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 392 |
+
"layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 393 |
+
"layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
| 394 |
+
"layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
| 395 |
+
"layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
| 396 |
+
"layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
| 397 |
+
"layers.9.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
|
| 398 |
+
"layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 399 |
+
"layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
| 400 |
+
"layers.9.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
|
| 401 |
+
"layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 402 |
+
"layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 403 |
+
"norm.weight": "model-00007-of-00007.safetensors"
|
| 404 |
+
}
|
| 405 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
search_results/examples/EVAL/eval_results.json
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"earth_science-examples": {
|
| 3 |
+
"ndcg_at_1": 0.57759,
|
| 4 |
+
"ndcg_at_10": 0.55426,
|
| 5 |
+
"ndcg_at_100": 0.64815,
|
| 6 |
+
"map_at_1": 0.23269,
|
| 7 |
+
"map_at_10": 0.44959,
|
| 8 |
+
"map_at_100": 0.49319,
|
| 9 |
+
"recall_at_1": 0.23269,
|
| 10 |
+
"recall_at_10": 0.58342,
|
| 11 |
+
"recall_at_100": 0.87067,
|
| 12 |
+
"precision_at_1": 0.57759,
|
| 13 |
+
"precision_at_10": 0.2181,
|
| 14 |
+
"precision_at_100": 0.03966,
|
| 15 |
+
"mrr_at_1": 0.57759,
|
| 16 |
+
"mrr_at_10": 0.67135,
|
| 17 |
+
"mrr_at_100": 0.67713
|
| 18 |
+
},
|
| 19 |
+
"theoremqa_questions-examples": {
|
| 20 |
+
"ndcg_at_1": 0.39691,
|
| 21 |
+
"ndcg_at_10": 0.4124,
|
| 22 |
+
"ndcg_at_100": 0.45757,
|
| 23 |
+
"map_at_1": 0.22809,
|
| 24 |
+
"map_at_10": 0.37578,
|
| 25 |
+
"map_at_100": 0.38535,
|
| 26 |
+
"recall_at_1": 0.22809,
|
| 27 |
+
"recall_at_10": 0.45814,
|
| 28 |
+
"recall_at_100": 0.64633,
|
| 29 |
+
"precision_at_1": 0.39691,
|
| 30 |
+
"precision_at_10": 0.09639,
|
| 31 |
+
"precision_at_100": 0.01309,
|
| 32 |
+
"mrr_at_1": 0.39691,
|
| 33 |
+
"mrr_at_10": 0.43798,
|
| 34 |
+
"mrr_at_100": 0.44688
|
| 35 |
+
},
|
| 36 |
+
"pony-examples": {
|
| 37 |
+
"ndcg_at_1": 0.24107,
|
| 38 |
+
"ndcg_at_10": 0.18695,
|
| 39 |
+
"ndcg_at_100": 0.27913,
|
| 40 |
+
"map_at_1": 0.0161,
|
| 41 |
+
"map_at_10": 0.05544,
|
| 42 |
+
"map_at_100": 0.09322,
|
| 43 |
+
"recall_at_1": 0.0161,
|
| 44 |
+
"recall_at_10": 0.09518,
|
| 45 |
+
"recall_at_100": 0.38397,
|
| 46 |
+
"precision_at_1": 0.24107,
|
| 47 |
+
"precision_at_10": 0.16696,
|
| 48 |
+
"precision_at_100": 0.07187,
|
| 49 |
+
"mrr_at_1": 0.24107,
|
| 50 |
+
"mrr_at_10": 0.37267,
|
| 51 |
+
"mrr_at_100": 0.38838
|
| 52 |
+
},
|
| 53 |
+
"robotics-examples": {
|
| 54 |
+
"ndcg_at_1": 0.28713,
|
| 55 |
+
"ndcg_at_10": 0.31993,
|
| 56 |
+
"ndcg_at_100": 0.40945,
|
| 57 |
+
"map_at_1": 0.14029,
|
| 58 |
+
"map_at_10": 0.23822,
|
| 59 |
+
"map_at_100": 0.26881,
|
| 60 |
+
"recall_at_1": 0.14029,
|
| 61 |
+
"recall_at_10": 0.37368,
|
| 62 |
+
"recall_at_100": 0.708,
|
| 63 |
+
"precision_at_1": 0.28713,
|
| 64 |
+
"precision_at_10": 0.11386,
|
| 65 |
+
"precision_at_100": 0.0298,
|
| 66 |
+
"mrr_at_1": 0.28713,
|
| 67 |
+
"mrr_at_10": 0.37628,
|
| 68 |
+
"mrr_at_100": 0.38883
|
| 69 |
+
},
|
| 70 |
+
"aops-examples": {
|
| 71 |
+
"ndcg_at_1": 0.13514,
|
| 72 |
+
"ndcg_at_10": 0.13305,
|
| 73 |
+
"ndcg_at_100": 0.21311,
|
| 74 |
+
"map_at_1": 0.03062,
|
| 75 |
+
"map_at_10": 0.07937,
|
| 76 |
+
"map_at_100": 0.10056,
|
| 77 |
+
"recall_at_1": 0.03062,
|
| 78 |
+
"recall_at_10": 0.1598,
|
| 79 |
+
"recall_at_100": 0.39924,
|
| 80 |
+
"precision_at_1": 0.13514,
|
| 81 |
+
"precision_at_10": 0.07207,
|
| 82 |
+
"precision_at_100": 0.01946,
|
| 83 |
+
"mrr_at_1": 0.13514,
|
| 84 |
+
"mrr_at_10": 0.20256,
|
| 85 |
+
"mrr_at_100": 0.21432
|
| 86 |
+
},
|
| 87 |
+
"sustainable_living-examples": {
|
| 88 |
+
"ndcg_at_1": 0.35185,
|
| 89 |
+
"ndcg_at_10": 0.37341,
|
| 90 |
+
"ndcg_at_100": 0.48528,
|
| 91 |
+
"map_at_1": 0.13027,
|
| 92 |
+
"map_at_10": 0.27505,
|
| 93 |
+
"map_at_100": 0.32648,
|
| 94 |
+
"recall_at_1": 0.13027,
|
| 95 |
+
"recall_at_10": 0.45011,
|
| 96 |
+
"recall_at_100": 0.80612,
|
| 97 |
+
"precision_at_1": 0.35185,
|
| 98 |
+
"precision_at_10": 0.16019,
|
| 99 |
+
"precision_at_100": 0.0375,
|
| 100 |
+
"mrr_at_1": 0.35185,
|
| 101 |
+
"mrr_at_10": 0.43959,
|
| 102 |
+
"mrr_at_100": 0.4535
|
| 103 |
+
},
|
| 104 |
+
"leetcode-examples": {
|
| 105 |
+
"ndcg_at_1": 0.28169,
|
| 106 |
+
"ndcg_at_10": 0.32309,
|
| 107 |
+
"ndcg_at_100": 0.38938,
|
| 108 |
+
"map_at_1": 0.17535,
|
| 109 |
+
"map_at_10": 0.25267,
|
| 110 |
+
"map_at_100": 0.26771,
|
| 111 |
+
"recall_at_1": 0.17535,
|
| 112 |
+
"recall_at_10": 0.41808,
|
| 113 |
+
"recall_at_100": 0.69519,
|
| 114 |
+
"precision_at_1": 0.28169,
|
| 115 |
+
"precision_at_10": 0.07254,
|
| 116 |
+
"precision_at_100": 0.01254,
|
| 117 |
+
"mrr_at_1": 0.28169,
|
| 118 |
+
"mrr_at_10": 0.37478,
|
| 119 |
+
"mrr_at_100": 0.38255
|
| 120 |
+
},
|
| 121 |
+
"economics-examples": {
|
| 122 |
+
"ndcg_at_1": 0.29126,
|
| 123 |
+
"ndcg_at_10": 0.33832,
|
| 124 |
+
"ndcg_at_100": 0.43577,
|
| 125 |
+
"map_at_1": 0.13804,
|
| 126 |
+
"map_at_10": 0.23934,
|
| 127 |
+
"map_at_100": 0.29841,
|
| 128 |
+
"recall_at_1": 0.13804,
|
| 129 |
+
"recall_at_10": 0.35798,
|
| 130 |
+
"recall_at_100": 0.72009,
|
| 131 |
+
"precision_at_1": 0.29126,
|
| 132 |
+
"precision_at_10": 0.15049,
|
| 133 |
+
"precision_at_100": 0.04738,
|
| 134 |
+
"mrr_at_1": 0.29126,
|
| 135 |
+
"mrr_at_10": 0.37666,
|
| 136 |
+
"mrr_at_100": 0.38917
|
| 137 |
+
},
|
| 138 |
+
"stackoverflow-examples": {
|
| 139 |
+
"ndcg_at_1": 0.30769,
|
| 140 |
+
"ndcg_at_10": 0.34329,
|
| 141 |
+
"ndcg_at_100": 0.44943,
|
| 142 |
+
"map_at_1": 0.12812,
|
| 143 |
+
"map_at_10": 0.26281,
|
| 144 |
+
"map_at_100": 0.30158,
|
| 145 |
+
"recall_at_1": 0.12812,
|
| 146 |
+
"recall_at_10": 0.43316,
|
| 147 |
+
"recall_at_100": 0.77889,
|
| 148 |
+
"precision_at_1": 0.30769,
|
| 149 |
+
"precision_at_10": 0.12222,
|
| 150 |
+
"precision_at_100": 0.03265,
|
| 151 |
+
"mrr_at_1": 0.2906,
|
| 152 |
+
"mrr_at_10": 0.3824,
|
| 153 |
+
"mrr_at_100": 0.39268
|
| 154 |
+
},
|
| 155 |
+
"biology-examples": {
|
| 156 |
+
"ndcg_at_1": 0.50485,
|
| 157 |
+
"ndcg_at_10": 0.54407,
|
| 158 |
+
"ndcg_at_100": 0.62536,
|
| 159 |
+
"map_at_1": 0.16222,
|
| 160 |
+
"map_at_10": 0.43293,
|
| 161 |
+
"map_at_100": 0.46687,
|
| 162 |
+
"recall_at_1": 0.16222,
|
| 163 |
+
"recall_at_10": 0.63582,
|
| 164 |
+
"recall_at_100": 0.91484,
|
| 165 |
+
"precision_at_1": 0.50485,
|
| 166 |
+
"precision_at_10": 0.22524,
|
| 167 |
+
"precision_at_100": 0.03301,
|
| 168 |
+
"mrr_at_1": 0.49515,
|
| 169 |
+
"mrr_at_10": 0.61066,
|
| 170 |
+
"mrr_at_100": 0.61562
|
| 171 |
+
},
|
| 172 |
+
"theoremqa_theorems-examples": {
|
| 173 |
+
"ndcg_at_1": 0.34211,
|
| 174 |
+
"ndcg_at_10": 0.47592,
|
| 175 |
+
"ndcg_at_100": 0.54161,
|
| 176 |
+
"map_at_1": 0.18499,
|
| 177 |
+
"map_at_10": 0.39117,
|
| 178 |
+
"map_at_100": 0.41019,
|
| 179 |
+
"recall_at_1": 0.18499,
|
| 180 |
+
"recall_at_10": 0.65116,
|
| 181 |
+
"recall_at_100": 0.89583,
|
| 182 |
+
"precision_at_1": 0.34211,
|
| 183 |
+
"precision_at_10": 0.11974,
|
| 184 |
+
"precision_at_100": 0.01763,
|
| 185 |
+
"mrr_at_1": 0.34211,
|
| 186 |
+
"mrr_at_10": 0.45854,
|
| 187 |
+
"mrr_at_100": 0.46713
|
| 188 |
+
},
|
| 189 |
+
"psychology-examples": {
|
| 190 |
+
"ndcg_at_1": 0.36634,
|
| 191 |
+
"ndcg_at_10": 0.45155,
|
| 192 |
+
"ndcg_at_100": 0.52282,
|
| 193 |
+
"map_at_1": 0.16264,
|
| 194 |
+
"map_at_10": 0.33572,
|
| 195 |
+
"map_at_100": 0.38264,
|
| 196 |
+
"recall_at_1": 0.16264,
|
| 197 |
+
"recall_at_10": 0.52951,
|
| 198 |
+
"recall_at_100": 0.8142,
|
| 199 |
+
"precision_at_1": 0.36634,
|
| 200 |
+
"precision_at_10": 0.19406,
|
| 201 |
+
"precision_at_100": 0.04168,
|
| 202 |
+
"mrr_at_1": 0.36634,
|
| 203 |
+
"mrr_at_10": 0.47711,
|
| 204 |
+
"mrr_at_100": 0.48678
|
| 205 |
+
}
|
| 206 |
+
}
|
search_results/examples/aops-examples.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
search_results/examples/biology-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ead63978ceaeaa9ca7e7cf76464526d81ec047109cabad6504da5a95640e84a
|
| 3 |
+
size 16553924
|
search_results/examples/earth_science-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b95f0afc233ab8cf863c35c04e32196626de3dc0ff07dff4c8870d27f5636e56
|
| 3 |
+
size 18149221
|
search_results/examples/economics-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcac89b03a3b96e453a89aef3f900f5d6bb24cc25ccf6511505205ec85bbac01
|
| 3 |
+
size 16603020
|
search_results/examples/leetcode-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8249e274e39aee71f58c32c5b51c0c2829e2f8d1f53f590ef3baa217f94b0725
|
| 3 |
+
size 18343911
|
search_results/examples/pony-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ac2ed1eb076819107e71f5f9599910a3979dea760573670146cb428bee09feb
|
| 3 |
+
size 14638419
|
search_results/examples/psychology-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab7aafa65d1315d0c4343b7cdd79af81a7efefb89f3bdac43358cb91ac16ca8c
|
| 3 |
+
size 15426558
|
search_results/examples/robotics-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6988daa347380112bf9946b28bbd8c79eb31700392ea515c04e4e1a9e7c7232
|
| 3 |
+
size 14420958
|
search_results/examples/stackoverflow-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db846b983ed8559a381e46947319ecc33c1439212b8961c87771cb6f1e71cee6
|
| 3 |
+
size 19083238
|
search_results/examples/sustainable_living-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d6ed4c57913ba4e7cf5080a09748891c0a5ecb4b9e310a4bf6de109170f2605
|
| 3 |
+
size 17535724
|
search_results/examples/theoremqa_questions-examples.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c92a819c01d84eaa07822693f1a5e0f016073ea86d21c37b964615216f2aacd
|
| 3 |
+
size 14691895
|
search_results/examples/theoremqa_theorems-examples.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4689bbafe5096d0a16cf2849ede8c67a98d4925bde8eba491f4a6839b1954fc6
|
| 3 |
+
size 11423803
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": true,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"151643": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"151644": {
|
| 15 |
+
"content": "<|im_start|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"151645": {
|
| 23 |
+
"content": "<|im_end|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"151646": {
|
| 31 |
+
"content": "<|object_ref_start|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"151647": {
|
| 39 |
+
"content": "<|object_ref_end|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"151648": {
|
| 47 |
+
"content": "<|box_start|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"151649": {
|
| 55 |
+
"content": "<|box_end|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"151650": {
|
| 63 |
+
"content": "<|quad_start|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"151651": {
|
| 71 |
+
"content": "<|quad_end|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"151652": {
|
| 79 |
+
"content": "<|vision_start|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"151653": {
|
| 87 |
+
"content": "<|vision_end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"151654": {
|
| 95 |
+
"content": "<|vision_pad|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"151655": {
|
| 103 |
+
"content": "<|image_pad|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"151656": {
|
| 111 |
+
"content": "<|video_pad|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"151657": {
|
| 119 |
+
"content": "<tool_call>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"151658": {
|
| 127 |
+
"content": "</tool_call>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"151659": {
|
| 135 |
+
"content": "<|fim_prefix|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"151660": {
|
| 143 |
+
"content": "<|fim_middle|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"151661": {
|
| 151 |
+
"content": "<|fim_suffix|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"151662": {
|
| 159 |
+
"content": "<|fim_pad|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"151663": {
|
| 167 |
+
"content": "<|repo_name|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"151664": {
|
| 175 |
+
"content": "<|file_sep|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"151665": {
|
| 183 |
+
"content": "<tool_response>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"151666": {
|
| 191 |
+
"content": "</tool_response>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"151667": {
|
| 199 |
+
"content": "<think>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"151668": {
|
| 207 |
+
"content": "</think>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
}
|
| 214 |
+
},
|
| 215 |
+
"additional_special_tokens": [
|
| 216 |
+
"<|im_start|>",
|
| 217 |
+
"<|im_end|>",
|
| 218 |
+
"<|object_ref_start|>",
|
| 219 |
+
"<|object_ref_end|>",
|
| 220 |
+
"<|box_start|>",
|
| 221 |
+
"<|box_end|>",
|
| 222 |
+
"<|quad_start|>",
|
| 223 |
+
"<|quad_end|>",
|
| 224 |
+
"<|vision_start|>",
|
| 225 |
+
"<|vision_end|>",
|
| 226 |
+
"<|vision_pad|>",
|
| 227 |
+
"<|image_pad|>",
|
| 228 |
+
"<|video_pad|>"
|
| 229 |
+
],
|
| 230 |
+
"bos_token": null,
|
| 231 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
| 232 |
+
"clean_up_tokenization_spaces": false,
|
| 233 |
+
"eos_token": "<|im_end|>",
|
| 234 |
+
"errors": "replace",
|
| 235 |
+
"extra_special_tokens": {},
|
| 236 |
+
"max_length": 512,
|
| 237 |
+
"model_max_length": 131072,
|
| 238 |
+
"pad_token": "<|endoftext|>",
|
| 239 |
+
"split_special_tokens": false,
|
| 240 |
+
"stride": 0,
|
| 241 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 242 |
+
"truncation_side": "right",
|
| 243 |
+
"truncation_strategy": "longest_first",
|
| 244 |
+
"unk_token": null
|
| 245 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|