Upload chart_elementnet_swin.py
Browse files- chart_elementnet_swin.py +399 -0
chart_elementnet_swin.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# cascade_rcnn_r50_fpn_meta.py - Enhanced config with Swin Transformer backbone
|
| 2 |
+
#
|
| 3 |
+
# PROGRESSIVE LOSS STRATEGY:
|
| 4 |
+
# - All 3 Cascade stages start with SmoothL1Loss for stable initial training
|
| 5 |
+
# - At epoch 5, Stage 3 (final stage) switches to GIoULoss via ProgressiveLossHook
|
| 6 |
+
# - Stage 1 & 2 remain SmoothL1Loss throughout training
|
| 7 |
+
# - This ensures model stability before introducing more complex IoU-based losses
|
| 8 |
+
_base_ = [
|
| 9 |
+
'../../mmdetection/configs/_base_/datasets/coco_detection.py',
|
| 10 |
+
'../../mmdetection/configs/_base_/schedules/schedule_1x.py',
|
| 11 |
+
'../../mmdetection/configs/_base_/default_runtime.py'
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
# Custom imports - this registers our modules without polluting config namespace
|
| 15 |
+
custom_imports = dict(
|
| 16 |
+
imports=[
|
| 17 |
+
'legend_match_swin.custom_models.custom_dataset',
|
| 18 |
+
'legend_match_swin.custom_models.register',
|
| 19 |
+
'legend_match_swin.custom_models.custom_hooks',
|
| 20 |
+
'legend_match_swin.custom_models.progressive_loss_hook',
|
| 21 |
+
],
|
| 22 |
+
allow_failed_imports=False
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Add to Python path
|
| 26 |
+
import sys
|
| 27 |
+
import os
|
| 28 |
+
# Use a simpler path approach that doesn't rely on __file__
|
| 29 |
+
sys.path.insert(0, os.path.join(os.getcwd(), '..', '..'))
|
| 30 |
+
|
| 31 |
+
# Custom Cascade model with coordinate handling for chart data
|
| 32 |
+
model = dict(
|
| 33 |
+
type='CustomCascadeWithMeta', # Use custom model with coordinate handling
|
| 34 |
+
coordinate_standardization=dict(
|
| 35 |
+
enabled=True,
|
| 36 |
+
origin='bottom_left', # Match annotation creation coordinate system
|
| 37 |
+
normalize=True,
|
| 38 |
+
relative_to_plot=False, # Keep simple for now
|
| 39 |
+
scale_to_axis=False # Keep simple for now
|
| 40 |
+
),
|
| 41 |
+
data_preprocessor=dict(
|
| 42 |
+
type='DetDataPreprocessor',
|
| 43 |
+
mean=[123.675, 116.28, 103.53],
|
| 44 |
+
std=[58.395, 57.12, 57.375],
|
| 45 |
+
bgr_to_rgb=True,
|
| 46 |
+
pad_size_divisor=32),
|
| 47 |
+
# ----- Swin Transformer Base (22K) Backbone + FPN -----
|
| 48 |
+
backbone=dict(
|
| 49 |
+
type='SwinTransformer',
|
| 50 |
+
embed_dims=128, # Swin Base embedding dimensions
|
| 51 |
+
depths=[2, 2, 18, 2], # Swin Base depths
|
| 52 |
+
num_heads=[4, 8, 16, 32], # Swin Base attention heads
|
| 53 |
+
window_size=7,
|
| 54 |
+
mlp_ratio=4,
|
| 55 |
+
qkv_bias=True,
|
| 56 |
+
qk_scale=None,
|
| 57 |
+
drop_rate=0.0,
|
| 58 |
+
attn_drop_rate=0.0,
|
| 59 |
+
drop_path_rate=0.3, # Slightly higher for more complex model
|
| 60 |
+
patch_norm=True,
|
| 61 |
+
out_indices=(0, 1, 2, 3),
|
| 62 |
+
with_cp=False,
|
| 63 |
+
convert_weights=True,
|
| 64 |
+
init_cfg=dict(
|
| 65 |
+
type='Pretrained',
|
| 66 |
+
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth'
|
| 67 |
+
)
|
| 68 |
+
),
|
| 69 |
+
neck=dict(
|
| 70 |
+
type='FPN',
|
| 71 |
+
in_channels=[128, 256, 512, 1024], # Swin Base: embed_dims * 2^(stage)
|
| 72 |
+
out_channels=256,
|
| 73 |
+
num_outs=6,
|
| 74 |
+
start_level=0,
|
| 75 |
+
add_extra_convs='on_input'
|
| 76 |
+
),
|
| 77 |
+
# Enhanced RPN with smaller anchors for tiny objects + improved losses
|
| 78 |
+
rpn_head=dict(
|
| 79 |
+
type='RPNHead',
|
| 80 |
+
in_channels=256,
|
| 81 |
+
feat_channels=256,
|
| 82 |
+
anchor_generator=dict(
|
| 83 |
+
type='AnchorGenerator',
|
| 84 |
+
scales=[1, 2, 4, 8], # Even smaller scales for tiny objects
|
| 85 |
+
ratios=[0.5, 1.0, 2.0], # Multiple aspect ratios
|
| 86 |
+
strides=[4, 8, 16, 32, 64, 128]), # Extended FPN strides
|
| 87 |
+
bbox_coder=dict(
|
| 88 |
+
type='DeltaXYWHBBoxCoder',
|
| 89 |
+
target_means=[.0, .0, .0, .0],
|
| 90 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
| 91 |
+
loss_cls=dict(
|
| 92 |
+
type='CrossEntropyLoss',
|
| 93 |
+
use_sigmoid=True,
|
| 94 |
+
loss_weight=1.0),
|
| 95 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
| 96 |
+
# Progressive Loss Strategy: Start with SmoothL1 for all 3 stages
|
| 97 |
+
# Stage 3 (final stage) will switch to GIoU at epoch 5 via ProgressiveLossHook
|
| 98 |
+
roi_head=dict(
|
| 99 |
+
type='CascadeRoIHead',
|
| 100 |
+
num_stages=3,
|
| 101 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
| 102 |
+
bbox_roi_extractor=dict(
|
| 103 |
+
type='SingleRoIExtractor',
|
| 104 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
| 105 |
+
out_channels=256,
|
| 106 |
+
featmap_strides=[4, 8, 16, 32]),
|
| 107 |
+
bbox_head=[
|
| 108 |
+
# Stage 1: Always SmoothL1Loss (coarse detection)
|
| 109 |
+
dict(
|
| 110 |
+
type='Shared2FCBBoxHead',
|
| 111 |
+
in_channels=256,
|
| 112 |
+
fc_out_channels=1024,
|
| 113 |
+
roi_feat_size=7,
|
| 114 |
+
num_classes=21, # 21 enhanced categories
|
| 115 |
+
bbox_coder=dict(
|
| 116 |
+
type='DeltaXYWHBBoxCoder',
|
| 117 |
+
target_means=[0., 0., 0., 0.],
|
| 118 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
| 119 |
+
reg_class_agnostic=True,
|
| 120 |
+
loss_cls=dict(
|
| 121 |
+
type='CrossEntropyLoss',
|
| 122 |
+
use_sigmoid=False,
|
| 123 |
+
loss_weight=1.0),
|
| 124 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
| 125 |
+
# Stage 2: Always SmoothL1Loss (intermediate refinement)
|
| 126 |
+
dict(
|
| 127 |
+
type='Shared2FCBBoxHead',
|
| 128 |
+
in_channels=256,
|
| 129 |
+
fc_out_channels=1024,
|
| 130 |
+
roi_feat_size=7,
|
| 131 |
+
num_classes=21, # 21 enhanced categories
|
| 132 |
+
bbox_coder=dict(
|
| 133 |
+
type='DeltaXYWHBBoxCoder',
|
| 134 |
+
target_means=[0., 0., 0., 0.],
|
| 135 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
| 136 |
+
reg_class_agnostic=True,
|
| 137 |
+
loss_cls=dict(
|
| 138 |
+
type='CrossEntropyLoss',
|
| 139 |
+
use_sigmoid=False,
|
| 140 |
+
loss_weight=1.0),
|
| 141 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
| 142 |
+
# Stage 3: SmoothL1 → GIoU at epoch 5 (progressive switching)
|
| 143 |
+
dict(
|
| 144 |
+
type='Shared2FCBBoxHead',
|
| 145 |
+
in_channels=256,
|
| 146 |
+
fc_out_channels=1024,
|
| 147 |
+
roi_feat_size=7,
|
| 148 |
+
num_classes=21, # 21 enhanced categories
|
| 149 |
+
bbox_coder=dict(
|
| 150 |
+
type='DeltaXYWHBBoxCoder',
|
| 151 |
+
target_means=[0., 0., 0., 0.],
|
| 152 |
+
target_stds=[0.02, 0.02, 0.05, 0.05]),
|
| 153 |
+
reg_class_agnostic=True,
|
| 154 |
+
loss_cls=dict(
|
| 155 |
+
type='CrossEntropyLoss',
|
| 156 |
+
use_sigmoid=False,
|
| 157 |
+
loss_weight=1.0),
|
| 158 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
| 159 |
+
]),
|
| 160 |
+
train_cfg=dict(
|
| 161 |
+
rpn=dict(
|
| 162 |
+
assigner=dict(
|
| 163 |
+
type='MaxIoUAssigner',
|
| 164 |
+
pos_iou_thr=0.7,
|
| 165 |
+
neg_iou_thr=0.3,
|
| 166 |
+
min_pos_iou=0.3,
|
| 167 |
+
match_low_quality=True,
|
| 168 |
+
ignore_iof_thr=-1),
|
| 169 |
+
sampler=dict(
|
| 170 |
+
type='RandomSampler',
|
| 171 |
+
num=256,
|
| 172 |
+
pos_fraction=0.5,
|
| 173 |
+
neg_pos_ub=-1,
|
| 174 |
+
add_gt_as_proposals=False),
|
| 175 |
+
allowed_border=0,
|
| 176 |
+
pos_weight=-1,
|
| 177 |
+
debug=False),
|
| 178 |
+
rpn_proposal=dict(
|
| 179 |
+
nms_pre=2000,
|
| 180 |
+
max_per_img=2000,
|
| 181 |
+
nms=dict(type='nms', iou_threshold=0.8),
|
| 182 |
+
min_bbox_size=0),
|
| 183 |
+
rcnn=[
|
| 184 |
+
dict(
|
| 185 |
+
assigner=dict(
|
| 186 |
+
type='MaxIoUAssigner',
|
| 187 |
+
pos_iou_thr=0.4,
|
| 188 |
+
neg_iou_thr=0.4,
|
| 189 |
+
min_pos_iou=0.4,
|
| 190 |
+
match_low_quality=False,
|
| 191 |
+
ignore_iof_thr=-1),
|
| 192 |
+
sampler=dict(
|
| 193 |
+
type='RandomSampler',
|
| 194 |
+
num=512,
|
| 195 |
+
pos_fraction=0.25,
|
| 196 |
+
neg_pos_ub=-1,
|
| 197 |
+
add_gt_as_proposals=True),
|
| 198 |
+
pos_weight=-1,
|
| 199 |
+
debug=False),
|
| 200 |
+
dict(
|
| 201 |
+
assigner=dict(
|
| 202 |
+
type='MaxIoUAssigner',
|
| 203 |
+
pos_iou_thr=0.6,
|
| 204 |
+
neg_iou_thr=0.6,
|
| 205 |
+
min_pos_iou=0.6,
|
| 206 |
+
match_low_quality=False,
|
| 207 |
+
ignore_iof_thr=-1),
|
| 208 |
+
sampler=dict(
|
| 209 |
+
type='RandomSampler',
|
| 210 |
+
num=512,
|
| 211 |
+
pos_fraction=0.25,
|
| 212 |
+
neg_pos_ub=-1,
|
| 213 |
+
add_gt_as_proposals=True),
|
| 214 |
+
pos_weight=-1,
|
| 215 |
+
debug=False),
|
| 216 |
+
dict(
|
| 217 |
+
assigner=dict(
|
| 218 |
+
type='MaxIoUAssigner',
|
| 219 |
+
pos_iou_thr=0.7,
|
| 220 |
+
neg_iou_thr=0.7,
|
| 221 |
+
min_pos_iou=0.7,
|
| 222 |
+
match_low_quality=False,
|
| 223 |
+
ignore_iof_thr=-1),
|
| 224 |
+
sampler=dict(
|
| 225 |
+
type='RandomSampler',
|
| 226 |
+
num=512,
|
| 227 |
+
pos_fraction=0.25,
|
| 228 |
+
neg_pos_ub=-1,
|
| 229 |
+
add_gt_as_proposals=True),
|
| 230 |
+
pos_weight=-1,
|
| 231 |
+
debug=False)
|
| 232 |
+
]),
|
| 233 |
+
# Enhanced test configuration with soft-NMS and multi-scale support
|
| 234 |
+
test_cfg=dict(
|
| 235 |
+
rpn=dict(
|
| 236 |
+
nms_pre=1000,
|
| 237 |
+
max_per_img=1000,
|
| 238 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 239 |
+
min_bbox_size=0),
|
| 240 |
+
rcnn=dict(
|
| 241 |
+
score_thr=0.005, # Even lower threshold to catch more classes
|
| 242 |
+
nms=dict(
|
| 243 |
+
type='soft_nms', # Soft-NMS for better small object detection
|
| 244 |
+
iou_threshold=0.5,
|
| 245 |
+
min_score=0.005,
|
| 246 |
+
method='gaussian',
|
| 247 |
+
sigma=0.5),
|
| 248 |
+
max_per_img=500))) # Allow more detections
|
| 249 |
+
|
| 250 |
+
# Dataset settings - using cleaned annotations
|
| 251 |
+
dataset_type = 'ChartDataset'
|
| 252 |
+
data_root = '' # Remove data_root duplication
|
| 253 |
+
|
| 254 |
+
# Define the 21 chart element classes that match the annotations
|
| 255 |
+
CLASSES = (
|
| 256 |
+
'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label',
|
| 257 |
+
'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item',
|
| 258 |
+
'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line',
|
| 259 |
+
'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area'
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Updated to use cleaned annotation files
|
| 263 |
+
train_dataloader = dict(
|
| 264 |
+
batch_size=2, # Increased back to 2
|
| 265 |
+
num_workers=2,
|
| 266 |
+
persistent_workers=True,
|
| 267 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 268 |
+
dataset=dict(
|
| 269 |
+
type=dataset_type,
|
| 270 |
+
data_root=data_root,
|
| 271 |
+
ann_file='legend_data/annotations_JSON_cleaned/train_enriched.json', # Full path
|
| 272 |
+
data_prefix=dict(img='legend_data/train/images/'), # Full path
|
| 273 |
+
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
|
| 274 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=0, class_specific_min_sizes={
|
| 275 |
+
'data-point': 16, # Back to 16x16 from 32x32
|
| 276 |
+
'data-bar': 16, # Back to 16x16 from 32x32
|
| 277 |
+
'tick-label': 16, # Back to 16x16 from 32x32
|
| 278 |
+
'x-tick-label': 16, # Back to 16x16 from 32x32
|
| 279 |
+
'y-tick-label': 16 # Back to 16x16 from 32x32
|
| 280 |
+
}),
|
| 281 |
+
pipeline=[
|
| 282 |
+
dict(type='LoadImageFromFile'),
|
| 283 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 284 |
+
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Higher resolution for tiny objects
|
| 285 |
+
dict(type='RandomFlip', prob=0.5),
|
| 286 |
+
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
|
| 287 |
+
dict(type='PackDetInputs')
|
| 288 |
+
]
|
| 289 |
+
)
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
val_dataloader = dict(
|
| 293 |
+
batch_size=1,
|
| 294 |
+
num_workers=2,
|
| 295 |
+
persistent_workers=True,
|
| 296 |
+
drop_last=False,
|
| 297 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 298 |
+
dataset=dict(
|
| 299 |
+
type=dataset_type,
|
| 300 |
+
data_root=data_root,
|
| 301 |
+
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Full path
|
| 302 |
+
data_prefix=dict(img='legend_data/train/images/'), # All images are in train/images
|
| 303 |
+
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
|
| 304 |
+
test_mode=True,
|
| 305 |
+
pipeline=[
|
| 306 |
+
dict(type='LoadImageFromFile'),
|
| 307 |
+
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Base resolution for validation
|
| 308 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 309 |
+
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
|
| 310 |
+
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
| 311 |
+
]
|
| 312 |
+
)
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
test_dataloader = val_dataloader
|
| 316 |
+
|
| 317 |
+
# Enhanced evaluators with debugging
|
| 318 |
+
val_evaluator = dict(
|
| 319 |
+
type='CocoMetric',
|
| 320 |
+
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Using cleaned annotations
|
| 321 |
+
metric='bbox',
|
| 322 |
+
format_only=False,
|
| 323 |
+
classwise=True, # Enable detailed per-class metrics table
|
| 324 |
+
proposal_nums=(100, 300, 1000)) # More detailed AR metrics
|
| 325 |
+
|
| 326 |
+
test_evaluator = val_evaluator
|
| 327 |
+
|
| 328 |
+
# Add custom hooks for debugging empty results
|
| 329 |
+
default_hooks = dict(
|
| 330 |
+
timer=dict(type='IterTimerHook'),
|
| 331 |
+
logger=dict(type='LoggerHook', interval=50),
|
| 332 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 333 |
+
checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3),
|
| 334 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 335 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 336 |
+
|
| 337 |
+
# Add NaN recovery hook for graceful handling like Faster R-CNN
|
| 338 |
+
custom_hooks = [
|
| 339 |
+
dict(type='SkipBadSamplesHook', interval=1), # Skip samples with bad GT data
|
| 340 |
+
dict(type='ChartTypeDistributionHook', interval=500), # Monitor class distribution
|
| 341 |
+
dict(type='MissingImageReportHook', interval=1000), # Track missing images
|
| 342 |
+
dict(type='NanRecoveryHook', # For logging & monitoring
|
| 343 |
+
fallback_loss=1.0,
|
| 344 |
+
max_consecutive_nans=100,
|
| 345 |
+
log_interval=50),
|
| 346 |
+
dict(type='ProgressiveLossHook', # Progressive loss switching
|
| 347 |
+
switch_epoch=5, # Switch stage 3 to GIoU at epoch 5
|
| 348 |
+
target_loss_type='GIoULoss', # Use GIoU for stage 3 (final stage)
|
| 349 |
+
loss_weight=1.0, # Keep same loss weight
|
| 350 |
+
warmup_epochs=2, # Monitor for 2 epochs after switch
|
| 351 |
+
monitor_stage_weights=True), # Log stage loss details
|
| 352 |
+
]
|
| 353 |
+
|
| 354 |
+
# Training configuration - extended to 40 epochs for Swin Base on small objects
|
| 355 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1)
|
| 356 |
+
val_cfg = dict(type='ValLoop')
|
| 357 |
+
test_cfg = dict(type='TestLoop')
|
| 358 |
+
|
| 359 |
+
# Optimizer with standard stable settings
|
| 360 |
+
optim_wrapper = dict(
|
| 361 |
+
type='OptimWrapper',
|
| 362 |
+
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001),
|
| 363 |
+
clip_grad=dict(max_norm=35.0, norm_type=2)
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
# Extended learning rate schedule with cosine annealing for Swin Base
|
| 367 |
+
param_scheduler = [
|
| 368 |
+
dict(
|
| 369 |
+
type='LinearLR',
|
| 370 |
+
start_factor=0.05, # 1e-4 / 2e-2 = 0.05 (warmup from 1e-4 to 2e-2)
|
| 371 |
+
by_epoch=False,
|
| 372 |
+
begin=0,
|
| 373 |
+
end=1000), # 1k iteration warmup
|
| 374 |
+
dict(
|
| 375 |
+
type='CosineAnnealingLR',
|
| 376 |
+
begin=0,
|
| 377 |
+
end=40, # Match max_epochs
|
| 378 |
+
by_epoch=True,
|
| 379 |
+
T_max=40,
|
| 380 |
+
eta_min=1e-6, # Minimum learning rate
|
| 381 |
+
convert_to_iter_based=True)
|
| 382 |
+
]
|
| 383 |
+
|
| 384 |
+
# Work directory
|
| 385 |
+
work_dir = './work_dirs/cascade_rcnn_swin_base_40ep_cosine_fpn_meta'
|
| 386 |
+
|
| 387 |
+
# Multi-scale test configuration (uncomment to enable)
|
| 388 |
+
# img_scales = [(800, 500), (1600, 1000), (2400, 1500)] # 0.5x, 1.0x, 1.5x scales
|
| 389 |
+
# tta_model = dict(
|
| 390 |
+
# type='DetTTAModel',
|
| 391 |
+
# tta_cfg=dict(
|
| 392 |
+
# nms=dict(type='nms', iou_threshold=0.5),
|
| 393 |
+
# max_per_img=100)
|
| 394 |
+
# )
|
| 395 |
+
|
| 396 |
+
# Fresh start
|
| 397 |
+
resume = False
|
| 398 |
+
load_from = None
|
| 399 |
+
|