Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,68 +1,95 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
- hmsolanki/indian-languages-audio-dataset
|
| 11 |
-
metrics:
|
| 12 |
-
- accuracy
|
| 13 |
-
- f1
|
| 14 |
---
|
| 15 |
|
| 16 |
-
# Indian
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
## Model Details
|
| 21 |
|
| 22 |
-
|
| 23 |
-
- **Languages Supported:** Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Punjabi, Tamil, Telugu, Urdu
|
| 24 |
-
- **Framework:** PyTorch
|
| 25 |
-
- **Training Dataset:** [Indian Languages Audio Dataset](https://www.kaggle.com/datasets/hmsolanki/indian-languages-audio-dataset/)
|
| 26 |
-
- **Audio Sampling Rate:** 16kHz
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
-
-
|
|
|
|
| 34 |
|
| 35 |
## Usage
|
| 36 |
|
| 37 |
```python
|
| 38 |
-
import
|
| 39 |
-
import
|
|
|
|
| 40 |
import json
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# Load the model
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
This model was trained on a dataset of Indian language audio samples. The model architecture combines CNN layers for feature extraction with transformer layers for classification.
|
| 65 |
-
|
| 66 |
-
## Confusion Matrix
|
| 67 |
-
|
| 68 |
-

|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
+
- mr
|
| 4 |
+
- te
|
| 5 |
+
- ml
|
| 6 |
tags:
|
| 7 |
+
- audio-classification
|
| 8 |
+
- speech-recognition
|
| 9 |
+
- indian-languages
|
| 10 |
+
- tensorflow
|
| 11 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Language Classifier - Indian Languages (Marathi, Telugu, Malayalam)
|
| 15 |
+
|
| 16 |
+
This model classifies audio samples into three Indian languages: Marathi, Telugu, and Malayalam.
|
| 17 |
+
|
| 18 |
+
## Model Description
|
| 19 |
+
|
| 20 |
+
### Model Architecture
|
| 21 |
+
- 1D Convolutional Neural Network (CNN) with the following key components:
|
| 22 |
+
- 3 Convolutional blocks with increasing filters (64, 128, 256)
|
| 23 |
+
- Batch Normalization and ReLU activation after each convolution
|
| 24 |
+
- MaxPooling and Dropout for regularization
|
| 25 |
+
- Dense layers with 256 units followed by a Softmax output layer
|
| 26 |
+
- Input: Audio features (MFCC + Delta features)
|
| 27 |
+
- Output: Language classification probabilities
|
| 28 |
+
|
| 29 |
+
### Training Data
|
| 30 |
+
The model was trained on:
|
| 31 |
+
- Total samples per language: 1000
|
| 32 |
+
- Training: 700 samples
|
| 33 |
+
- Validation: 150 samples
|
| 34 |
+
- Test: 150 samples
|
| 35 |
+
|
| 36 |
+
### Features
|
| 37 |
+
- MFCC (Mel-frequency cepstral coefficients) with delta features
|
| 38 |
+
- Number of MFCC coefficients: 13
|
| 39 |
+
- Maximum padding length: 174
|
| 40 |
+
- Feature type: MFCC with delta and delta-delta features
|
| 41 |
+
|
| 42 |
+
### Training Hyperparameters
|
| 43 |
+
- Optimizer: AdamW
|
| 44 |
+
- Learning rate: 0.001
|
| 45 |
+
- Batch size: 64
|
| 46 |
+
- Early stopping with patience of 10
|
| 47 |
+
- Learning rate reduction on plateau
|
| 48 |
+
- Loss function: Categorical Cross-entropy
|
| 49 |
|
| 50 |
+
## Performance
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
The model achieves strong performance in distinguishing between Marathi, Telugu, and Malayalam speech samples.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
### Intended Use
|
| 55 |
+
This model is designed for:
|
| 56 |
+
- Language identification in audio samples
|
| 57 |
+
- Speech processing applications focusing on Indian languages
|
| 58 |
+
- Research and development in multilingual speech systems
|
| 59 |
|
| 60 |
+
### Limitations
|
| 61 |
+
- Limited to three languages: Marathi, Telugu, Malayalam
|
| 62 |
+
- Fixed input length requirement
|
| 63 |
+
- May not perform well on very noisy audio
|
| 64 |
+
- Not suitable for real-time processing without proper preprocessing
|
| 65 |
|
| 66 |
## Usage
|
| 67 |
|
| 68 |
```python
|
| 69 |
+
import tensorflow as tf
|
| 70 |
+
import numpy as np
|
| 71 |
+
import joblib
|
| 72 |
import json
|
| 73 |
+
import librosa
|
| 74 |
+
|
| 75 |
+
# Load the model, scaler, and config
|
| 76 |
+
model = tf.keras.models.load_model('indic_language_classifier_mtm.keras')
|
| 77 |
+
scaler = joblib.load('audio_feature_scaler_mtm.pkl')
|
| 78 |
+
with open('config_mtm.json', 'r') as f:
|
| 79 |
+
config = json.load(f)
|
| 80 |
+
|
| 81 |
+
def extract_features(audio_path, config):
|
| 82 |
+
audio, sr = librosa.load(audio_path, sr=None)
|
| 83 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=config['n_mfcc'])
|
| 84 |
+
delta_mfccs = librosa.feature.delta(mfccs)
|
| 85 |
+
delta2_mfccs = librosa.feature.delta(mfccs, order=2)
|
| 86 |
+
features = np.concatenate((mfccs, delta_mfccs, delta2_mfccs), axis=0)
|
| 87 |
+
|
| 88 |
+
# Pad or truncate
|
| 89 |
+
if features.shape[1] > config['max_pad_len']:
|
| 90 |
+
features = features[:, :config['max_pad_len']]
|
| 91 |
+
else:
|
| 92 |
+
pad_width = config['max_pad_len'] - features.shape[1]
|
| 93 |
+
features = np.pad(features, pad_width=((0, 0), (0, pad_width)))
|
| 94 |
+
|
| 95 |
+
return features.T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|