Upload model
Browse files- README.md +199 -0
- config.json +26 -0
- configuration.py +33 -0
- model.safetensors +3 -0
- modeling.py +533 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"TotalClassifierModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration.TotalClassifierConfig",
|
| 7 |
+
"AutoModel": "modeling.TotalClassifierModel"
|
| 8 |
+
},
|
| 9 |
+
"backbone": "tf_efficientnetv2_b0",
|
| 10 |
+
"cnn_dropout": 0.1,
|
| 11 |
+
"feature_dim": 192,
|
| 12 |
+
"image_size": [
|
| 13 |
+
256,
|
| 14 |
+
256
|
| 15 |
+
],
|
| 16 |
+
"in_chans": 1,
|
| 17 |
+
"linear_dropout": 0.1,
|
| 18 |
+
"model_type": "total_classifier",
|
| 19 |
+
"num_classes": 117,
|
| 20 |
+
"rnn_dropout": 0.0,
|
| 21 |
+
"rnn_num_layers": 1,
|
| 22 |
+
"rnn_type": "GRU",
|
| 23 |
+
"seq_len": 512,
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.47.0"
|
| 26 |
+
}
|
configuration.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class TotalClassifierConfig(PretrainedConfig):
|
| 5 |
+
model_type = "total_classifier"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
backbone: str = "tf_efficientnetv2_b0",
|
| 10 |
+
feature_dim: int = 192,
|
| 11 |
+
cnn_dropout: float = 0.1,
|
| 12 |
+
in_chans: int = 1,
|
| 13 |
+
rnn_type: str = "GRU",
|
| 14 |
+
rnn_num_layers: int = 1,
|
| 15 |
+
rnn_dropout: float = 0.0,
|
| 16 |
+
num_classes: int = 117,
|
| 17 |
+
seq_len: int = 512,
|
| 18 |
+
linear_dropout: float = 0.1,
|
| 19 |
+
image_size: tuple[int, int] = (256, 256),
|
| 20 |
+
**kwargs,
|
| 21 |
+
):
|
| 22 |
+
self.backbone = backbone
|
| 23 |
+
self.feature_dim = feature_dim
|
| 24 |
+
self.cnn_dropout = cnn_dropout
|
| 25 |
+
self.in_chans = in_chans
|
| 26 |
+
self.rnn_type = rnn_type
|
| 27 |
+
self.rnn_num_layers = rnn_num_layers
|
| 28 |
+
self.rnn_dropout = rnn_dropout
|
| 29 |
+
self.num_classes = num_classes
|
| 30 |
+
self.seq_len = seq_len
|
| 31 |
+
self.linear_dropout = linear_dropout
|
| 32 |
+
self.image_size = image_size
|
| 33 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:235e8d4cb902c53b68c91e0e61c7837dcda376508eae7b9896a5631ca75b3a0b
|
| 3 |
+
size 23472996
|
modeling.py
ADDED
|
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import glob
|
| 3 |
+
import json
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from transformers import PreTrainedModel
|
| 13 |
+
from timm import create_model
|
| 14 |
+
|
| 15 |
+
from .configuration import TotalClassifierConfig
|
| 16 |
+
|
| 17 |
+
_PYDICOM_AVAILABLE = False
|
| 18 |
+
try:
|
| 19 |
+
from pydicom import dcmread
|
| 20 |
+
|
| 21 |
+
_PYDICOM_AVAILABLE = True
|
| 22 |
+
except ModuleNotFoundError:
|
| 23 |
+
pass
|
| 24 |
+
|
| 25 |
+
_PANDAS_AVAILABLE = False
|
| 26 |
+
try:
|
| 27 |
+
import pandas as pd
|
| 28 |
+
|
| 29 |
+
_PANDAS_AVAILABLE = True
|
| 30 |
+
except ModuleNotFoundError:
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class RNNHead(nn.Module):
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
rnn_type: str,
|
| 38 |
+
rnn_num_layers: int,
|
| 39 |
+
rnn_dropout: float,
|
| 40 |
+
feature_dim: int,
|
| 41 |
+
linear_dropout: float,
|
| 42 |
+
num_classes: int,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.rnn = getattr(nn, rnn_type)(
|
| 46 |
+
input_size=feature_dim,
|
| 47 |
+
hidden_size=feature_dim // 2,
|
| 48 |
+
num_layers=rnn_num_layers,
|
| 49 |
+
dropout=rnn_dropout,
|
| 50 |
+
batch_first=True,
|
| 51 |
+
bidirectional=True,
|
| 52 |
+
)
|
| 53 |
+
self.dropout = nn.Dropout(linear_dropout)
|
| 54 |
+
self.linear = nn.Linear(feature_dim, num_classes)
|
| 55 |
+
|
| 56 |
+
@staticmethod
|
| 57 |
+
def convert_seq_and_mask_to_packed_sequence(
|
| 58 |
+
seq: torch.Tensor, mask: torch.Tensor
|
| 59 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 60 |
+
assert seq.shape[0] == mask.shape[0]
|
| 61 |
+
lengths = mask.sum(1)
|
| 62 |
+
seq = nn.utils.rnn.pack_padded_sequence(
|
| 63 |
+
seq, lengths.cpu().int(), batch_first=True, enforce_sorted=False
|
| 64 |
+
)
|
| 65 |
+
return seq
|
| 66 |
+
|
| 67 |
+
def forward(
|
| 68 |
+
self, x: torch.Tensor, mask: torch.Tensor | None = None
|
| 69 |
+
) -> torch.Tensor:
|
| 70 |
+
skip = x
|
| 71 |
+
if mask is not None:
|
| 72 |
+
# convert to PackedSequence
|
| 73 |
+
L = x.shape[1]
|
| 74 |
+
x = self.convert_seq_and_mask_to_packed_sequence(x, mask)
|
| 75 |
+
|
| 76 |
+
x, _ = self.rnn(x)
|
| 77 |
+
|
| 78 |
+
if mask is not None:
|
| 79 |
+
# convert back to tensor
|
| 80 |
+
x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True, total_length=L)[0]
|
| 81 |
+
|
| 82 |
+
x = x + skip
|
| 83 |
+
return self.linear(self.dropout(x))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class TotalClassifierModel(PreTrainedModel):
|
| 87 |
+
config_class = TotalClassifierConfig
|
| 88 |
+
|
| 89 |
+
def __init__(self, config):
|
| 90 |
+
super().__init__(config)
|
| 91 |
+
self.image_size = config.image_size
|
| 92 |
+
self.backbone = create_model(
|
| 93 |
+
model_name=config.backbone,
|
| 94 |
+
pretrained=False,
|
| 95 |
+
num_classes=0,
|
| 96 |
+
global_pool="",
|
| 97 |
+
features_only=True,
|
| 98 |
+
in_chans=config.in_chans,
|
| 99 |
+
)
|
| 100 |
+
self.cnn_dropout = nn.Dropout(p=config.cnn_dropout)
|
| 101 |
+
self.head = RNNHead(
|
| 102 |
+
rnn_type=config.rnn_type,
|
| 103 |
+
rnn_num_layers=config.rnn_num_layers,
|
| 104 |
+
rnn_dropout=config.rnn_dropout,
|
| 105 |
+
feature_dim=config.feature_dim,
|
| 106 |
+
linear_dropout=config.linear_dropout,
|
| 107 |
+
num_classes=config.num_classes,
|
| 108 |
+
)
|
| 109 |
+
with open(
|
| 110 |
+
os.path.join(Path(__file__).parent.absolute(), "label2index.json"), "r"
|
| 111 |
+
) as f:
|
| 112 |
+
self.label2index = json.load(f)
|
| 113 |
+
|
| 114 |
+
self.index2label = {v: k for k, v in self.label2index.items()}
|
| 115 |
+
|
| 116 |
+
def forward(
|
| 117 |
+
self,
|
| 118 |
+
x: torch.Tensor,
|
| 119 |
+
mask: torch.Tensor | None = None,
|
| 120 |
+
return_logits: bool = False,
|
| 121 |
+
return_as_dict: bool = False,
|
| 122 |
+
return_as_df: bool = False,
|
| 123 |
+
) -> torch.Tensor:
|
| 124 |
+
if return_as_df:
|
| 125 |
+
assert (
|
| 126 |
+
_PANDAS_AVAILABLE
|
| 127 |
+
), "`return_as_df=True` requires pandas to be installed"
|
| 128 |
+
# x.shape = (b, n, c, h, w)
|
| 129 |
+
b, n, c, h, w = x.shape
|
| 130 |
+
# x = rearrange(x, "b n c h w -> (b n) c h w")
|
| 131 |
+
x = x.reshape(b * n, c, h, w)
|
| 132 |
+
x = self.normalize(x)
|
| 133 |
+
# avg pooling
|
| 134 |
+
features = self.backbone(x)
|
| 135 |
+
# take last feature map
|
| 136 |
+
features = F.adaptive_avg_pool2d(features[-1], 1).flatten(1)
|
| 137 |
+
features = self.cnn_dropout(features)
|
| 138 |
+
# features = rearrange(features, "(b n) d -> b n d", b=b, n=n)
|
| 139 |
+
features = features.reshape(b, n, -1)
|
| 140 |
+
logits = self.head(features, mask=mask)
|
| 141 |
+
if return_logits:
|
| 142 |
+
# return raw logits
|
| 143 |
+
return logits
|
| 144 |
+
probas = logits.sigmoid()
|
| 145 |
+
if return_as_dict or return_as_df:
|
| 146 |
+
# list_of_dictionaries
|
| 147 |
+
batch_list = []
|
| 148 |
+
for i in range(probas.shape[0]):
|
| 149 |
+
dict_for_batch = {}
|
| 150 |
+
probas_i = probas[i]
|
| 151 |
+
for each_class in range(probas_i.shape[1]):
|
| 152 |
+
dict_for_batch[self.index2label[each_class]] = probas_i[
|
| 153 |
+
:, each_class
|
| 154 |
+
]
|
| 155 |
+
if return_as_df:
|
| 156 |
+
batch_list.append(
|
| 157 |
+
pd.DataFrame(
|
| 158 |
+
{k: v.cpu().numpy() for k, v in dict_for_batch.items()}
|
| 159 |
+
)
|
| 160 |
+
)
|
| 161 |
+
else:
|
| 162 |
+
batch_list.append(dict_for_batch)
|
| 163 |
+
return batch_list
|
| 164 |
+
return probas
|
| 165 |
+
|
| 166 |
+
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
| 167 |
+
# [0, 255] -> [-1, 1]
|
| 168 |
+
mini, maxi = 0.0, 255.0
|
| 169 |
+
x = (x - mini) / (maxi - mini)
|
| 170 |
+
x = (x - 0.5) * 2.0
|
| 171 |
+
return x
|
| 172 |
+
|
| 173 |
+
@staticmethod
|
| 174 |
+
def window(x: np.ndarray, WL: int, WW: int) -> np.ndarray[np.uint8]:
|
| 175 |
+
# applying windowing to CT
|
| 176 |
+
lower, upper = WL - WW // 2, WL + WW // 2
|
| 177 |
+
x = np.clip(x, lower, upper)
|
| 178 |
+
x = (x - lower) / (upper - lower)
|
| 179 |
+
return (x * 255.0).astype("uint8")
|
| 180 |
+
|
| 181 |
+
@staticmethod
|
| 182 |
+
def validate_windows_type(windows):
|
| 183 |
+
assert isinstance(windows, tuple) or isinstance(windows, list)
|
| 184 |
+
if isinstance(windows, tuple):
|
| 185 |
+
assert len(windows) == 2
|
| 186 |
+
assert [isinstance(_, int) for _ in windows]
|
| 187 |
+
elif isinstance(windows, list):
|
| 188 |
+
assert all([isinstance(_, tuple) for _ in windows])
|
| 189 |
+
assert all([len(_) == 2 for _ in windows])
|
| 190 |
+
assert all([isinstance(__, int) for _ in windows for __ in _])
|
| 191 |
+
|
| 192 |
+
@staticmethod
|
| 193 |
+
def determine_dicom_orientation(ds) -> int:
|
| 194 |
+
iop = ds.ImageOrientationPatient
|
| 195 |
+
|
| 196 |
+
# Calculate the direction cosine for the normal vector of the plane
|
| 197 |
+
normal_vector = np.cross(iop[:3], iop[3:])
|
| 198 |
+
|
| 199 |
+
# Determine the plane based on the largest component of the normal vector
|
| 200 |
+
abs_normal = np.abs(normal_vector)
|
| 201 |
+
if abs_normal[0] > abs_normal[1] and abs_normal[0] > abs_normal[2]:
|
| 202 |
+
return 0 # sagittal
|
| 203 |
+
elif abs_normal[1] > abs_normal[0] and abs_normal[1] > abs_normal[2]:
|
| 204 |
+
return 1 # coronal
|
| 205 |
+
else:
|
| 206 |
+
return 2 # axial
|
| 207 |
+
|
| 208 |
+
def load_image_from_dicom(
|
| 209 |
+
self, path: str, windows: tuple[int, int] | list[tuple[int, int]] | None = None
|
| 210 |
+
) -> np.ndarray:
|
| 211 |
+
# windows can be tuple of (WINDOW_LEVEL, WINDOW_WIDTH)
|
| 212 |
+
# or list of tuples if wishing to generate multi-channel image using
|
| 213 |
+
# > 1 window
|
| 214 |
+
if not _PYDICOM_AVAILABLE:
|
| 215 |
+
raise Exception("`pydicom` is not installed")
|
| 216 |
+
dicom = dcmread(path)
|
| 217 |
+
array = dicom.pixel_array.astype("float32")
|
| 218 |
+
m, b = float(dicom.RescaleSlope), float(dicom.RescaleIntercept)
|
| 219 |
+
array = array * m + b
|
| 220 |
+
if windows is None:
|
| 221 |
+
return array
|
| 222 |
+
|
| 223 |
+
self.validate_windows_type(windows)
|
| 224 |
+
if isinstance(windows, tuple):
|
| 225 |
+
windows = [windows]
|
| 226 |
+
|
| 227 |
+
arr_list = []
|
| 228 |
+
for WL, WW in windows:
|
| 229 |
+
arr_list.append(self.window(array.copy(), WL, WW))
|
| 230 |
+
|
| 231 |
+
array = np.stack(arr_list, axis=-1)
|
| 232 |
+
if array.shape[-1] == 1:
|
| 233 |
+
array = np.squeeze(array, axis=-1)
|
| 234 |
+
|
| 235 |
+
return array
|
| 236 |
+
|
| 237 |
+
@staticmethod
|
| 238 |
+
def is_valid_dicom(
|
| 239 |
+
ds,
|
| 240 |
+
fname: str = "",
|
| 241 |
+
sort_by_instance_number: bool = False,
|
| 242 |
+
exclude_invalid_dicoms: bool = False,
|
| 243 |
+
) -> bool:
|
| 244 |
+
attributes = [
|
| 245 |
+
"pixel_array",
|
| 246 |
+
"RescaleSlope",
|
| 247 |
+
"RescaleIntercept",
|
| 248 |
+
]
|
| 249 |
+
if sort_by_instance_number:
|
| 250 |
+
attributes.append("InstanceNumber")
|
| 251 |
+
else:
|
| 252 |
+
attributes.append("ImagePositionPatient")
|
| 253 |
+
attributes.append("ImageOrientationPatient")
|
| 254 |
+
attributes_present = [hasattr(ds, attr) for attr in attributes]
|
| 255 |
+
valid = all(attributes_present)
|
| 256 |
+
if not valid and not exclude_invalid_dicoms:
|
| 257 |
+
raise Exception(
|
| 258 |
+
f"invalid DICOM file [{fname}]: missing attributes: {list(np.array(attributes)[~np.array(attributes_present)])}"
|
| 259 |
+
)
|
| 260 |
+
return valid
|
| 261 |
+
|
| 262 |
+
@staticmethod
|
| 263 |
+
def most_common_element(lst):
|
| 264 |
+
return max(set(lst), key=lst.count)
|
| 265 |
+
|
| 266 |
+
@staticmethod
|
| 267 |
+
def center_crop_or_pad_borders(image, size):
|
| 268 |
+
height, width = image.shape[:2]
|
| 269 |
+
new_height, new_width = size
|
| 270 |
+
if new_height < height:
|
| 271 |
+
# crop top and bottom
|
| 272 |
+
crop_top = (height - new_height) // 2
|
| 273 |
+
crop_bottom = height - new_height - crop_top
|
| 274 |
+
image = image[crop_top:-crop_bottom]
|
| 275 |
+
elif new_height > height:
|
| 276 |
+
# pad top and bottom
|
| 277 |
+
pad_top = (new_height - height) // 2
|
| 278 |
+
pad_bottom = new_height - height - pad_top
|
| 279 |
+
image = np.pad(
|
| 280 |
+
image,
|
| 281 |
+
((pad_top, pad_bottom), (0, 0)),
|
| 282 |
+
mode="constant",
|
| 283 |
+
constant_values=0,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if new_width < width:
|
| 287 |
+
# crop left and right
|
| 288 |
+
crop_left = (width - new_width) // 2
|
| 289 |
+
crop_right = width - new_width - crop_left
|
| 290 |
+
image = image[:, crop_left:-crop_right]
|
| 291 |
+
elif new_width > width:
|
| 292 |
+
# pad left and right
|
| 293 |
+
pad_left = (new_width - width) // 2
|
| 294 |
+
pad_right = new_width - width - pad_left
|
| 295 |
+
image = np.pad(
|
| 296 |
+
image,
|
| 297 |
+
((0, 0), (pad_left, pad_right)),
|
| 298 |
+
mode="constant",
|
| 299 |
+
constant_values=0,
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
return image
|
| 303 |
+
|
| 304 |
+
def load_stack_from_dicom_folder(
|
| 305 |
+
self,
|
| 306 |
+
path: str,
|
| 307 |
+
windows: tuple[int, int] | list[tuple[int, int]] | None = None,
|
| 308 |
+
dicom_extension: str = ".dcm",
|
| 309 |
+
sort_by_instance_number: bool = False,
|
| 310 |
+
exclude_invalid_dicoms: bool = False,
|
| 311 |
+
fix_unequal_shapes: str = "crop_pad",
|
| 312 |
+
return_sorted_dicom_files: bool = False,
|
| 313 |
+
) -> np.ndarray | tuple[np.ndarray, list[str]]:
|
| 314 |
+
if not _PYDICOM_AVAILABLE:
|
| 315 |
+
raise Exception("`pydicom` is not installed")
|
| 316 |
+
dicom_files = glob.glob(os.path.join(path, f"*{dicom_extension}"))
|
| 317 |
+
if len(dicom_files) == 0:
|
| 318 |
+
raise Exception(
|
| 319 |
+
f"No DICOM files found in `{path}` using `dicom_extension={dicom_extension}`"
|
| 320 |
+
)
|
| 321 |
+
dicoms = [dcmread(f) for f in dicom_files]
|
| 322 |
+
dicoms = [
|
| 323 |
+
(d, dicom_files[idx])
|
| 324 |
+
for idx, d in enumerate(dicoms)
|
| 325 |
+
if self.is_valid_dicom(
|
| 326 |
+
d, dicom_files[idx], sort_by_instance_number, exclude_invalid_dicoms
|
| 327 |
+
)
|
| 328 |
+
]
|
| 329 |
+
# handles exclude_invalid_dicoms=True and return_sorted_dicom_files=True
|
| 330 |
+
# by only including valid DICOM filenames
|
| 331 |
+
dicom_files = [_[1] for _ in dicoms]
|
| 332 |
+
dicoms = [_[0] for _ in dicoms]
|
| 333 |
+
|
| 334 |
+
slices = [dcm.pixel_array.astype("float32") for dcm in dicoms]
|
| 335 |
+
shapes = np.stack([s.shape for s in slices], axis=0)
|
| 336 |
+
if not np.all(shapes == shapes[0]):
|
| 337 |
+
unique_shapes, counts = np.unique(shapes, axis=0, return_counts=True)
|
| 338 |
+
standard_shape = tuple(unique_shapes[np.argmax(counts)])
|
| 339 |
+
print(
|
| 340 |
+
f"warning: different array shapes present, using {fix_unequal_shapes} -> {standard_shape}"
|
| 341 |
+
)
|
| 342 |
+
if fix_unequal_shapes == "crop_pad":
|
| 343 |
+
slices = [
|
| 344 |
+
self.center_crop_or_pad_borders(s, standard_shape)
|
| 345 |
+
if s.shape != standard_shape
|
| 346 |
+
else s
|
| 347 |
+
for s in slices
|
| 348 |
+
]
|
| 349 |
+
elif fix_unequal_shapes == "resize":
|
| 350 |
+
slices = [
|
| 351 |
+
cv2.resize(s, standard_shape) if s.shape != standard_shape else s
|
| 352 |
+
for s in slices
|
| 353 |
+
]
|
| 354 |
+
slices = np.stack(slices, axis=0)
|
| 355 |
+
# find orientation
|
| 356 |
+
orientation = [self.determine_dicom_orientation(dcm) for dcm in dicoms]
|
| 357 |
+
# use most common
|
| 358 |
+
orientation = self.most_common_element(orientation)
|
| 359 |
+
|
| 360 |
+
# sort using ImagePositionPatient
|
| 361 |
+
# orientation is index to use for sorting
|
| 362 |
+
if sort_by_instance_number:
|
| 363 |
+
positions = [float(d.InstanceNumber) for d in dicoms]
|
| 364 |
+
else:
|
| 365 |
+
positions = [float(d.ImagePositionPatient[orientation]) for d in dicoms]
|
| 366 |
+
indices = np.argsort(positions)
|
| 367 |
+
slices = slices[indices]
|
| 368 |
+
|
| 369 |
+
# rescale
|
| 370 |
+
m, b = (
|
| 371 |
+
[float(d.RescaleSlope) for d in dicoms],
|
| 372 |
+
[float(d.RescaleIntercept) for d in dicoms],
|
| 373 |
+
)
|
| 374 |
+
m, b = self.most_common_element(m), self.most_common_element(b)
|
| 375 |
+
slices = slices * m + b
|
| 376 |
+
if windows is not None:
|
| 377 |
+
self.validate_windows_type(windows)
|
| 378 |
+
if isinstance(windows, tuple):
|
| 379 |
+
windows = [windows]
|
| 380 |
+
|
| 381 |
+
arr_list = []
|
| 382 |
+
for WL, WW in windows:
|
| 383 |
+
arr_list.append(self.window(slices.copy(), WL, WW))
|
| 384 |
+
|
| 385 |
+
slices = np.stack(arr_list, axis=-1)
|
| 386 |
+
if slices.shape[-1] == 1:
|
| 387 |
+
slices = np.squeeze(slices, axis=-1)
|
| 388 |
+
|
| 389 |
+
if return_sorted_dicom_files:
|
| 390 |
+
return slices, [dicom_files[idx] for idx in indices]
|
| 391 |
+
return slices
|
| 392 |
+
|
| 393 |
+
def preprocess(self, x: np.ndarray, mode="2d") -> np.ndarray:
|
| 394 |
+
mode = mode.lower()
|
| 395 |
+
if mode == "2d":
|
| 396 |
+
x = cv2.resize(x, self.image_size)
|
| 397 |
+
if x.ndim == 2:
|
| 398 |
+
x = x[:, :, np.newaxis]
|
| 399 |
+
elif mode == "3d":
|
| 400 |
+
x = np.stack([cv2.resize(s, self.image_size) for s in x], axis=0)
|
| 401 |
+
if x.ndim == 3:
|
| 402 |
+
x = x[:, :, :, np.newaxis]
|
| 403 |
+
return x
|
| 404 |
+
|
| 405 |
+
def crop_single_plane(
|
| 406 |
+
self,
|
| 407 |
+
x: np.ndarray,
|
| 408 |
+
device: str | torch.device,
|
| 409 |
+
organ: str | list[str],
|
| 410 |
+
threshold: float = 0.5,
|
| 411 |
+
buffer: float | int = 0,
|
| 412 |
+
speed_up: str | None = None,
|
| 413 |
+
) -> np.ndarray:
|
| 414 |
+
num_slices = x.shape[0]
|
| 415 |
+
if speed_up is not None:
|
| 416 |
+
assert speed_up in ["fast", "faster", "fastest"]
|
| 417 |
+
if speed_up == "fast":
|
| 418 |
+
# 75% of slices
|
| 419 |
+
reduce_num_slices = 3 * num_slices // 4
|
| 420 |
+
elif speed_up == "faster":
|
| 421 |
+
# 50% of slices
|
| 422 |
+
reduce_num_slices = num_slices // 2
|
| 423 |
+
elif speed_up == "fastest":
|
| 424 |
+
# 33% of slices
|
| 425 |
+
reduce_num_slices = num_slices // 3
|
| 426 |
+
indices = np.linspace(0, num_slices - 1, reduce_num_slices).astype(int)
|
| 427 |
+
x = x[indices]
|
| 428 |
+
x = self.preprocess(x, mode="3d")
|
| 429 |
+
x = torch.from_numpy(x)
|
| 430 |
+
x = rearrange(x, "n h w c -> n c h w").float().to(device)
|
| 431 |
+
x = rearrange(x, "n c h w -> 1 n c h w")
|
| 432 |
+
if x.size(2) > 1:
|
| 433 |
+
# if multi-channel, take mean
|
| 434 |
+
x = x.mean(2, keepdim=True)
|
| 435 |
+
organ_cls = self.forward(x)[0]
|
| 436 |
+
if speed_up is not None:
|
| 437 |
+
# organ_cls.shape = (num_slices, num_classes)
|
| 438 |
+
organ_cls = (
|
| 439 |
+
F.interpolate(
|
| 440 |
+
organ_cls.transpose(1, 0).unsqueeze(0),
|
| 441 |
+
size=(num_slices,),
|
| 442 |
+
mode="linear",
|
| 443 |
+
)
|
| 444 |
+
.squeeze(0)
|
| 445 |
+
.transpose(1, 0)
|
| 446 |
+
)
|
| 447 |
+
assert organ_cls.shape[0] == num_slices
|
| 448 |
+
slices = []
|
| 449 |
+
for each_organ in organ:
|
| 450 |
+
slices.append(
|
| 451 |
+
torch.where(organ_cls[:, self.label2index[each_organ]] >= threshold)[0]
|
| 452 |
+
)
|
| 453 |
+
slices = torch.cat(slices)
|
| 454 |
+
slice_min, slice_max = slices.min().item(), slices.max().item()
|
| 455 |
+
if buffer > 0:
|
| 456 |
+
if isinstance(buffer, float):
|
| 457 |
+
# % buffer
|
| 458 |
+
diff = slice_max - slice_min
|
| 459 |
+
buf = int(buffer * diff)
|
| 460 |
+
else:
|
| 461 |
+
# absolute slice buffer
|
| 462 |
+
buf = buffer
|
| 463 |
+
slice_min = max(0, slice_min - buf)
|
| 464 |
+
slice_max = min(num_slices - 1, slice_max + buf)
|
| 465 |
+
return slice_min, slice_max
|
| 466 |
+
|
| 467 |
+
@torch.no_grad()
|
| 468 |
+
def crop(
|
| 469 |
+
self,
|
| 470 |
+
x: np.ndarray,
|
| 471 |
+
organ: str | list[str],
|
| 472 |
+
crop_dims: int | list[int] = 0,
|
| 473 |
+
device: str | torch.device | None = None,
|
| 474 |
+
raw_hu: bool = False,
|
| 475 |
+
threshold: float = 0.5,
|
| 476 |
+
buffer: float | int = 0,
|
| 477 |
+
speed_up: str | None = None,
|
| 478 |
+
) -> (
|
| 479 |
+
np.ndarray
|
| 480 |
+
| tuple[np.ndarray, list[int]]
|
| 481 |
+
| tuple[np.ndarray, list[int], list[int]]
|
| 482 |
+
):
|
| 483 |
+
if device is None:
|
| 484 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 485 |
+
assert isinstance(x, np.ndarray)
|
| 486 |
+
assert x.ndim in {
|
| 487 |
+
3,
|
| 488 |
+
4,
|
| 489 |
+
}, f"x should be a 3D or 4D array, but got {x.ndim} dimensions"
|
| 490 |
+
|
| 491 |
+
if raw_hu:
|
| 492 |
+
# if input is in Hounsfield units, apply soft tissue window
|
| 493 |
+
x = self.window(x, WL=50, WW=400)
|
| 494 |
+
|
| 495 |
+
x0 = x
|
| 496 |
+
if not isinstance(organ, list):
|
| 497 |
+
organ = [organ]
|
| 498 |
+
if not isinstance(crop_dims, list):
|
| 499 |
+
crop_dims = [crop_dims]
|
| 500 |
+
|
| 501 |
+
assert max(crop_dims) <= 2
|
| 502 |
+
assert min(crop_dims) >= 0
|
| 503 |
+
|
| 504 |
+
if isinstance(buffer, float):
|
| 505 |
+
# percentage of cropped axis dimension
|
| 506 |
+
assert buffer < 1
|
| 507 |
+
|
| 508 |
+
if 0 in crop_dims:
|
| 509 |
+
smin0, smax0 = self.crop_single_plane(
|
| 510 |
+
x0, device, organ, threshold, buffer, speed_up
|
| 511 |
+
)
|
| 512 |
+
else:
|
| 513 |
+
smin0, smax0 = 0, x0.shape[0]
|
| 514 |
+
|
| 515 |
+
if 1 in crop_dims:
|
| 516 |
+
# swap plane
|
| 517 |
+
x = x0.transpose(1, 0, 2)
|
| 518 |
+
smin1, smax1 = self.crop_single_plane(
|
| 519 |
+
x, device, organ, threshold, buffer, speed_up
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
smin1, smax1 = 0, x0.shape[1]
|
| 523 |
+
|
| 524 |
+
if 2 in crop_dims:
|
| 525 |
+
# swap plane
|
| 526 |
+
x = x0.transpose(2, 1, 0)
|
| 527 |
+
smin2, smax2 = self.crop_single_plane(
|
| 528 |
+
x, device, organ, threshold, buffer, speed_up
|
| 529 |
+
)
|
| 530 |
+
else:
|
| 531 |
+
smin2, smax2 = 0, x0.shape[2]
|
| 532 |
+
|
| 533 |
+
return x0[smin0 : smax0 + 1, smin1 : smax1 + 1, smin2 : smax2 + 1]
|