Victor Shirasuna
commited on
Commit
·
60b6403
1
Parent(s):
999fcb8
Added evaluate method and option to save for each epoch in finetune
Browse files
smi-ted/finetune/args.py
CHANGED
|
@@ -305,6 +305,7 @@ def get_parser(parser=None):
|
|
| 305 |
parser.add_argument("--model_path", type=str, default="./smi_ted/")
|
| 306 |
parser.add_argument("--ckpt_filename", type=str, default="smi_ted_Light_40.pt")
|
| 307 |
# parser.add_argument('--n_output', type=int, default=1)
|
|
|
|
| 308 |
parser.add_argument("--save_ckpt", type=int, default=1)
|
| 309 |
parser.add_argument("--start_seed", type=int, default=0)
|
| 310 |
parser.add_argument("--smi_ted_version", type=str, default="v1")
|
|
|
|
| 305 |
parser.add_argument("--model_path", type=str, default="./smi_ted/")
|
| 306 |
parser.add_argument("--ckpt_filename", type=str, default="smi_ted_Light_40.pt")
|
| 307 |
# parser.add_argument('--n_output', type=int, default=1)
|
| 308 |
+
parser.add_argument("--save_every_epoch", type=int, default=0)
|
| 309 |
parser.add_argument("--save_ckpt", type=int, default=1)
|
| 310 |
parser.add_argument("--start_seed", type=int, default=0)
|
| 311 |
parser.add_argument("--smi_ted_version", type=str, default="v1")
|
smi-ted/finetune/finetune_classification.py
CHANGED
|
@@ -48,6 +48,7 @@ def main(config):
|
|
| 48 |
seed=config.start_seed,
|
| 49 |
checkpoints_folder=config.checkpoints_folder,
|
| 50 |
device=device,
|
|
|
|
| 51 |
save_ckpt=bool(config.save_ckpt)
|
| 52 |
)
|
| 53 |
trainer.compile(
|
|
@@ -56,6 +57,7 @@ def main(config):
|
|
| 56 |
loss_fn=loss_function
|
| 57 |
)
|
| 58 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
if __name__ == '__main__':
|
|
|
|
| 48 |
seed=config.start_seed,
|
| 49 |
checkpoints_folder=config.checkpoints_folder,
|
| 50 |
device=device,
|
| 51 |
+
save_every_epoch=bool(config.save_every_epoch),
|
| 52 |
save_ckpt=bool(config.save_ckpt)
|
| 53 |
)
|
| 54 |
trainer.compile(
|
|
|
|
| 57 |
loss_fn=loss_function
|
| 58 |
)
|
| 59 |
trainer.fit(max_epochs=config.max_epochs)
|
| 60 |
+
trainer.evaluate()
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == '__main__':
|
smi-ted/finetune/finetune_classification_multitask.py
CHANGED
|
@@ -80,6 +80,7 @@ def main(config):
|
|
| 80 |
seed=config.start_seed,
|
| 81 |
checkpoints_folder=config.checkpoints_folder,
|
| 82 |
device=device,
|
|
|
|
| 83 |
save_ckpt=bool(config.save_ckpt)
|
| 84 |
)
|
| 85 |
trainer.compile(
|
|
@@ -88,6 +89,7 @@ def main(config):
|
|
| 88 |
loss_fn=loss_function
|
| 89 |
)
|
| 90 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
if __name__ == '__main__':
|
|
|
|
| 80 |
seed=config.start_seed,
|
| 81 |
checkpoints_folder=config.checkpoints_folder,
|
| 82 |
device=device,
|
| 83 |
+
save_every_epoch=bool(config.save_every_epoch),
|
| 84 |
save_ckpt=bool(config.save_ckpt)
|
| 85 |
)
|
| 86 |
trainer.compile(
|
|
|
|
| 89 |
loss_fn=loss_function
|
| 90 |
)
|
| 91 |
trainer.fit(max_epochs=config.max_epochs)
|
| 92 |
+
trainer.evaluate()
|
| 93 |
|
| 94 |
|
| 95 |
if __name__ == '__main__':
|
smi-ted/finetune/finetune_regression.py
CHANGED
|
@@ -50,6 +50,7 @@ def main(config):
|
|
| 50 |
seed=config.start_seed,
|
| 51 |
checkpoints_folder=config.checkpoints_folder,
|
| 52 |
device=device,
|
|
|
|
| 53 |
save_ckpt=bool(config.save_ckpt)
|
| 54 |
)
|
| 55 |
trainer.compile(
|
|
@@ -58,6 +59,7 @@ def main(config):
|
|
| 58 |
loss_fn=loss_function
|
| 59 |
)
|
| 60 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == '__main__':
|
|
|
|
| 50 |
seed=config.start_seed,
|
| 51 |
checkpoints_folder=config.checkpoints_folder,
|
| 52 |
device=device,
|
| 53 |
+
save_every_epoch=bool(config.save_every_epoch),
|
| 54 |
save_ckpt=bool(config.save_ckpt)
|
| 55 |
)
|
| 56 |
trainer.compile(
|
|
|
|
| 59 |
loss_fn=loss_function
|
| 60 |
)
|
| 61 |
trainer.fit(max_epochs=config.max_epochs)
|
| 62 |
+
trainer.evaluate()
|
| 63 |
|
| 64 |
|
| 65 |
if __name__ == '__main__':
|
smi-ted/finetune/trainers.py
CHANGED
|
@@ -25,7 +25,7 @@ from utils import RMSE, sensitivity, specificity
|
|
| 25 |
class Trainer:
|
| 26 |
|
| 27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 28 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
| 29 |
# data
|
| 30 |
self.df_train = raw_data[0]
|
| 31 |
self.df_valid = raw_data[1]
|
|
@@ -40,6 +40,7 @@ class Trainer:
|
|
| 40 |
self.target_metric = target_metric
|
| 41 |
self.seed = seed
|
| 42 |
self.checkpoints_folder = checkpoints_folder
|
|
|
|
| 43 |
self.save_ckpt = save_ckpt
|
| 44 |
self.device = device
|
| 45 |
self._set_seed(seed)
|
|
@@ -81,8 +82,7 @@ class Trainer:
|
|
| 81 |
self._print_configuration()
|
| 82 |
|
| 83 |
def fit(self, max_epochs=500):
|
| 84 |
-
best_vloss =
|
| 85 |
-
best_vmetric = -1
|
| 86 |
|
| 87 |
for epoch in range(1, max_epochs+1):
|
| 88 |
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
|
|
@@ -91,47 +91,47 @@ class Trainer:
|
|
| 91 |
self.model.to(self.device)
|
| 92 |
self.model.train()
|
| 93 |
train_loss = self._train_one_epoch()
|
| 94 |
-
print(f'Training loss: {round(train_loss, 6)}')
|
| 95 |
|
| 96 |
-
#
|
| 97 |
self.model.eval()
|
| 98 |
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
|
| 99 |
-
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
|
| 100 |
-
|
| 101 |
-
print(f"Valid loss: {round(val_loss, 6)}")
|
| 102 |
for m in val_metrics.keys():
|
| 103 |
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
|
| 104 |
-
print("-"*32)
|
| 105 |
-
print(f"Test loss: {round(tst_loss, 6)}")
|
| 106 |
-
for m in tst_metrics.keys():
|
| 107 |
-
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
| 108 |
|
| 109 |
############################### Save Finetune checkpoint #######################################
|
| 110 |
-
if (val_loss < best_vloss) and self.save_ckpt:
|
| 111 |
# remove old checkpoint
|
| 112 |
-
if
|
| 113 |
-
os.remove(os.path.join(self.checkpoints_folder,
|
| 114 |
|
| 115 |
# filename
|
| 116 |
model_name = f'{str(self.model)}-Finetune'
|
| 117 |
-
|
| 118 |
-
filename = f"{model_name}_epoch={epoch}_{self.dataset_name}_seed{self.seed}_{self.target_metric}={metric}.pt"
|
| 119 |
|
| 120 |
# save checkpoint
|
| 121 |
print('Saving checkpoint...')
|
| 122 |
-
self._save_checkpoint(epoch,
|
| 123 |
-
|
| 124 |
-
# save predictions
|
| 125 |
-
pd.DataFrame(tst_preds).to_csv(
|
| 126 |
-
os.path.join(
|
| 127 |
-
self.checkpoints_folder,
|
| 128 |
-
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
| 129 |
-
index=False
|
| 130 |
-
)
|
| 131 |
|
| 132 |
# update best loss
|
| 133 |
best_vloss = val_loss
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
def _train_one_epoch(self):
|
| 137 |
raise NotImplementedError
|
|
@@ -153,6 +153,11 @@ class Trainer:
|
|
| 153 |
print('Valid size:\t', self.df_valid.shape[0])
|
| 154 |
print('Test size:\t', self.df_test.shape[0])
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
def _save_checkpoint(self, current_epoch, filename):
|
| 157 |
if not os.path.exists(self.checkpoints_folder):
|
| 158 |
os.makedirs(self.checkpoints_folder)
|
|
@@ -198,14 +203,14 @@ class Trainer:
|
|
| 198 |
class TrainerRegressor(Trainer):
|
| 199 |
|
| 200 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 201 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
| 202 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 203 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
| 204 |
|
| 205 |
def _train_one_epoch(self):
|
| 206 |
running_loss = 0.0
|
| 207 |
|
| 208 |
-
for data in tqdm(self.train_loader):
|
| 209 |
# Every data instance is an input + label pair
|
| 210 |
smiles, targets = data
|
| 211 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -227,6 +232,11 @@ class TrainerRegressor(Trainer):
|
|
| 227 |
# print statistics
|
| 228 |
running_loss += loss.item()
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
return running_loss / len(self.train_loader)
|
| 231 |
|
| 232 |
def _validate_one_epoch(self, data_loader):
|
|
@@ -235,7 +245,7 @@ class TrainerRegressor(Trainer):
|
|
| 235 |
running_loss = 0.0
|
| 236 |
|
| 237 |
with torch.no_grad():
|
| 238 |
-
for data in tqdm(data_loader):
|
| 239 |
# Every data instance is an input + label pair
|
| 240 |
smiles, targets = data
|
| 241 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -253,6 +263,11 @@ class TrainerRegressor(Trainer):
|
|
| 253 |
# print statistics
|
| 254 |
running_loss += loss.item()
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
# Put together predictions and labels from batches
|
| 257 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
| 258 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
@@ -271,20 +286,20 @@ class TrainerRegressor(Trainer):
|
|
| 271 |
'spearman': spearman,
|
| 272 |
}
|
| 273 |
|
| 274 |
-
return preds, running_loss / len(
|
| 275 |
|
| 276 |
|
| 277 |
class TrainerClassifier(Trainer):
|
| 278 |
|
| 279 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 280 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
| 281 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 282 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
| 283 |
|
| 284 |
def _train_one_epoch(self):
|
| 285 |
running_loss = 0.0
|
| 286 |
|
| 287 |
-
for data in tqdm(self.train_loader):
|
| 288 |
# Every data instance is an input + label pair
|
| 289 |
smiles, targets = data
|
| 290 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -306,6 +321,11 @@ class TrainerClassifier(Trainer):
|
|
| 306 |
# print statistics
|
| 307 |
running_loss += loss.item()
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
return running_loss / len(self.train_loader)
|
| 310 |
|
| 311 |
def _validate_one_epoch(self, data_loader):
|
|
@@ -314,7 +334,7 @@ class TrainerClassifier(Trainer):
|
|
| 314 |
running_loss = 0.0
|
| 315 |
|
| 316 |
with torch.no_grad():
|
| 317 |
-
for data in tqdm(data_loader):
|
| 318 |
# Every data instance is an input + label pair
|
| 319 |
smiles, targets = data
|
| 320 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -332,6 +352,11 @@ class TrainerClassifier(Trainer):
|
|
| 332 |
# print statistics
|
| 333 |
running_loss += loss.item()
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
# Put together predictions and labels from batches
|
| 336 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
| 337 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
@@ -366,15 +391,15 @@ class TrainerClassifier(Trainer):
|
|
| 366 |
'specificity': sp,
|
| 367 |
}
|
| 368 |
|
| 369 |
-
return preds, running_loss / len(
|
| 370 |
|
| 371 |
|
| 372 |
class TrainerClassifierMultitask(Trainer):
|
| 373 |
|
| 374 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 375 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
| 376 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 377 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
| 378 |
|
| 379 |
def _prepare_data(self):
|
| 380 |
# normalize dataset
|
|
@@ -409,7 +434,7 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 409 |
def _train_one_epoch(self):
|
| 410 |
running_loss = 0.0
|
| 411 |
|
| 412 |
-
for data in tqdm(self.train_loader):
|
| 413 |
# Every data instance is an input + label pair + mask
|
| 414 |
smiles, targets, target_masks = data
|
| 415 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -432,6 +457,11 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 432 |
# print statistics
|
| 433 |
running_loss += loss.item()
|
| 434 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
return running_loss / len(self.train_loader)
|
| 436 |
|
| 437 |
def _validate_one_epoch(self, data_loader):
|
|
@@ -441,7 +471,7 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 441 |
running_loss = 0.0
|
| 442 |
|
| 443 |
with torch.no_grad():
|
| 444 |
-
for data in tqdm(data_loader):
|
| 445 |
# Every data instance is an input + label pair + mask
|
| 446 |
smiles, targets, target_masks = data
|
| 447 |
targets = targets.clone().detach().to(self.device)
|
|
@@ -461,6 +491,11 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 461 |
# print statistics
|
| 462 |
running_loss += loss.item()
|
| 463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
# Put together predictions and labels from batches
|
| 465 |
preds = torch.cat(data_preds, dim=0)
|
| 466 |
tgts = torch.cat(data_targets, dim=0)
|
|
@@ -513,4 +548,4 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 513 |
'specificity': average_sp.item(),
|
| 514 |
}
|
| 515 |
|
| 516 |
-
return preds, running_loss / len(
|
|
|
|
| 25 |
class Trainer:
|
| 26 |
|
| 27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 28 |
+
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 29 |
# data
|
| 30 |
self.df_train = raw_data[0]
|
| 31 |
self.df_valid = raw_data[1]
|
|
|
|
| 40 |
self.target_metric = target_metric
|
| 41 |
self.seed = seed
|
| 42 |
self.checkpoints_folder = checkpoints_folder
|
| 43 |
+
self.save_every_epoch = save_every_epoch
|
| 44 |
self.save_ckpt = save_ckpt
|
| 45 |
self.device = device
|
| 46 |
self._set_seed(seed)
|
|
|
|
| 82 |
self._print_configuration()
|
| 83 |
|
| 84 |
def fit(self, max_epochs=500):
|
| 85 |
+
best_vloss = float('inf')
|
|
|
|
| 86 |
|
| 87 |
for epoch in range(1, max_epochs+1):
|
| 88 |
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
|
|
|
|
| 91 |
self.model.to(self.device)
|
| 92 |
self.model.train()
|
| 93 |
train_loss = self._train_one_epoch()
|
|
|
|
| 94 |
|
| 95 |
+
# validation
|
| 96 |
self.model.eval()
|
| 97 |
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
|
|
|
|
|
|
|
|
|
|
| 98 |
for m in val_metrics.keys():
|
| 99 |
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
############################### Save Finetune checkpoint #######################################
|
| 102 |
+
if ((val_loss < best_vloss) or self.save_every_epoch) and self.save_ckpt:
|
| 103 |
# remove old checkpoint
|
| 104 |
+
if best_vloss != float('inf') and not self.save_every_epoch:
|
| 105 |
+
os.remove(os.path.join(self.checkpoints_folder, self.last_filename))
|
| 106 |
|
| 107 |
# filename
|
| 108 |
model_name = f'{str(self.model)}-Finetune'
|
| 109 |
+
self.last_filename = f"{model_name}_epoch={epoch}_{self.dataset_name}_seed{self.seed}_valloss={round(val_loss, 4)}.pt"
|
|
|
|
| 110 |
|
| 111 |
# save checkpoint
|
| 112 |
print('Saving checkpoint...')
|
| 113 |
+
self._save_checkpoint(epoch, self.last_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# update best loss
|
| 116 |
best_vloss = val_loss
|
| 117 |
+
|
| 118 |
+
def evaluate(self):
|
| 119 |
+
print("\n=====Test Evaluation=====")
|
| 120 |
+
self._load_checkpoint(self.last_filename)
|
| 121 |
+
self.model.eval()
|
| 122 |
+
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
|
| 123 |
+
|
| 124 |
+
# show metrics
|
| 125 |
+
for m in tst_metrics.keys():
|
| 126 |
+
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
| 127 |
+
|
| 128 |
+
# save predictions
|
| 129 |
+
pd.DataFrame(tst_preds).to_csv(
|
| 130 |
+
os.path.join(
|
| 131 |
+
self.checkpoints_folder,
|
| 132 |
+
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
| 133 |
+
index=False
|
| 134 |
+
)
|
| 135 |
|
| 136 |
def _train_one_epoch(self):
|
| 137 |
raise NotImplementedError
|
|
|
|
| 153 |
print('Valid size:\t', self.df_valid.shape[0])
|
| 154 |
print('Test size:\t', self.df_test.shape[0])
|
| 155 |
|
| 156 |
+
def _load_checkpoint(self, filename):
|
| 157 |
+
ckpt_path = os.path.join(self.checkpoints_folder, filename)
|
| 158 |
+
ckpt_dict = torch.load(ckpt_path, map_location='cpu')
|
| 159 |
+
self.model.load_state_dict(ckpt_dict['MODEL_STATE'])
|
| 160 |
+
|
| 161 |
def _save_checkpoint(self, current_epoch, filename):
|
| 162 |
if not os.path.exists(self.checkpoints_folder):
|
| 163 |
os.makedirs(self.checkpoints_folder)
|
|
|
|
| 203 |
class TrainerRegressor(Trainer):
|
| 204 |
|
| 205 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 206 |
+
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 207 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 208 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 209 |
|
| 210 |
def _train_one_epoch(self):
|
| 211 |
running_loss = 0.0
|
| 212 |
|
| 213 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
| 214 |
# Every data instance is an input + label pair
|
| 215 |
smiles, targets = data
|
| 216 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 232 |
# print statistics
|
| 233 |
running_loss += loss.item()
|
| 234 |
|
| 235 |
+
# progress bar
|
| 236 |
+
pbar.set_description('[TRAINING]')
|
| 237 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 238 |
+
pbar.refresh()
|
| 239 |
+
|
| 240 |
return running_loss / len(self.train_loader)
|
| 241 |
|
| 242 |
def _validate_one_epoch(self, data_loader):
|
|
|
|
| 245 |
running_loss = 0.0
|
| 246 |
|
| 247 |
with torch.no_grad():
|
| 248 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 249 |
# Every data instance is an input + label pair
|
| 250 |
smiles, targets = data
|
| 251 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 263 |
# print statistics
|
| 264 |
running_loss += loss.item()
|
| 265 |
|
| 266 |
+
# progress bar
|
| 267 |
+
pbar.set_description('[EVALUATION]')
|
| 268 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 269 |
+
pbar.refresh()
|
| 270 |
+
|
| 271 |
# Put together predictions and labels from batches
|
| 272 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
| 273 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
|
|
| 286 |
'spearman': spearman,
|
| 287 |
}
|
| 288 |
|
| 289 |
+
return preds, running_loss / len(data_loader), metrics
|
| 290 |
|
| 291 |
|
| 292 |
class TrainerClassifier(Trainer):
|
| 293 |
|
| 294 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 295 |
+
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 296 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 297 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 298 |
|
| 299 |
def _train_one_epoch(self):
|
| 300 |
running_loss = 0.0
|
| 301 |
|
| 302 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
| 303 |
# Every data instance is an input + label pair
|
| 304 |
smiles, targets = data
|
| 305 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 321 |
# print statistics
|
| 322 |
running_loss += loss.item()
|
| 323 |
|
| 324 |
+
# progress bar
|
| 325 |
+
pbar.set_description('[TRAINING]')
|
| 326 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 327 |
+
pbar.refresh()
|
| 328 |
+
|
| 329 |
return running_loss / len(self.train_loader)
|
| 330 |
|
| 331 |
def _validate_one_epoch(self, data_loader):
|
|
|
|
| 334 |
running_loss = 0.0
|
| 335 |
|
| 336 |
with torch.no_grad():
|
| 337 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 338 |
# Every data instance is an input + label pair
|
| 339 |
smiles, targets = data
|
| 340 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 352 |
# print statistics
|
| 353 |
running_loss += loss.item()
|
| 354 |
|
| 355 |
+
# progress bar
|
| 356 |
+
pbar.set_description('[EVALUATION]')
|
| 357 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 358 |
+
pbar.refresh()
|
| 359 |
+
|
| 360 |
# Put together predictions and labels from batches
|
| 361 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
| 362 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
|
|
| 391 |
'specificity': sp,
|
| 392 |
}
|
| 393 |
|
| 394 |
+
return preds, running_loss / len(data_loader), metrics
|
| 395 |
|
| 396 |
|
| 397 |
class TrainerClassifierMultitask(Trainer):
|
| 398 |
|
| 399 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 400 |
+
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 401 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 402 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 403 |
|
| 404 |
def _prepare_data(self):
|
| 405 |
# normalize dataset
|
|
|
|
| 434 |
def _train_one_epoch(self):
|
| 435 |
running_loss = 0.0
|
| 436 |
|
| 437 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
| 438 |
# Every data instance is an input + label pair + mask
|
| 439 |
smiles, targets, target_masks = data
|
| 440 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 457 |
# print statistics
|
| 458 |
running_loss += loss.item()
|
| 459 |
|
| 460 |
+
# progress bar
|
| 461 |
+
pbar.set_description('[TRAINING]')
|
| 462 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 463 |
+
pbar.refresh()
|
| 464 |
+
|
| 465 |
return running_loss / len(self.train_loader)
|
| 466 |
|
| 467 |
def _validate_one_epoch(self, data_loader):
|
|
|
|
| 471 |
running_loss = 0.0
|
| 472 |
|
| 473 |
with torch.no_grad():
|
| 474 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 475 |
# Every data instance is an input + label pair + mask
|
| 476 |
smiles, targets, target_masks = data
|
| 477 |
targets = targets.clone().detach().to(self.device)
|
|
|
|
| 491 |
# print statistics
|
| 492 |
running_loss += loss.item()
|
| 493 |
|
| 494 |
+
# progress bar
|
| 495 |
+
pbar.set_description('[EVALUATION]')
|
| 496 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
| 497 |
+
pbar.refresh()
|
| 498 |
+
|
| 499 |
# Put together predictions and labels from batches
|
| 500 |
preds = torch.cat(data_preds, dim=0)
|
| 501 |
tgts = torch.cat(data_targets, dim=0)
|
|
|
|
| 548 |
'specificity': average_sp.item(),
|
| 549 |
}
|
| 550 |
|
| 551 |
+
return preds, running_loss / len(data_loader), metrics
|