Victor Shirasuna
commited on
Commit
·
db22044
1
Parent(s):
2b992bc
Added changes
Browse files
smi-ted/finetune/finetune_classification.py
CHANGED
|
@@ -28,7 +28,7 @@ def main(config):
|
|
| 28 |
elif config.smi_ted_version == 'v2':
|
| 29 |
from smi_ted_large.load import load_smi_ted
|
| 30 |
|
| 31 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output)
|
| 32 |
model.net.apply(model._init_weights)
|
| 33 |
print(model.net)
|
| 34 |
|
|
@@ -46,6 +46,7 @@ def main(config):
|
|
| 46 |
hparams=config,
|
| 47 |
target_metric=config.target_metric,
|
| 48 |
seed=config.start_seed,
|
|
|
|
| 49 |
checkpoints_folder=config.checkpoints_folder,
|
| 50 |
device=device,
|
| 51 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
|
| 28 |
elif config.smi_ted_version == 'v2':
|
| 29 |
from smi_ted_large.load import load_smi_ted
|
| 30 |
|
| 31 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output, eval=False)
|
| 32 |
model.net.apply(model._init_weights)
|
| 33 |
print(model.net)
|
| 34 |
|
|
|
|
| 46 |
hparams=config,
|
| 47 |
target_metric=config.target_metric,
|
| 48 |
seed=config.start_seed,
|
| 49 |
+
smi_ted_version=config.smi_ted_version,
|
| 50 |
checkpoints_folder=config.checkpoints_folder,
|
| 51 |
device=device,
|
| 52 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/finetune_classification_multitask.py
CHANGED
|
@@ -60,7 +60,7 @@ def main(config):
|
|
| 60 |
elif config.smi_ted_version == 'v2':
|
| 61 |
from smi_ted_large.load import load_smi_ted
|
| 62 |
|
| 63 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=len(targets))
|
| 64 |
model.net.apply(model._init_weights)
|
| 65 |
print(model.net)
|
| 66 |
|
|
@@ -78,6 +78,7 @@ def main(config):
|
|
| 78 |
hparams=config,
|
| 79 |
target_metric=config.target_metric,
|
| 80 |
seed=config.start_seed,
|
|
|
|
| 81 |
checkpoints_folder=config.checkpoints_folder,
|
| 82 |
device=device,
|
| 83 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
|
| 60 |
elif config.smi_ted_version == 'v2':
|
| 61 |
from smi_ted_large.load import load_smi_ted
|
| 62 |
|
| 63 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=len(targets), eval=False)
|
| 64 |
model.net.apply(model._init_weights)
|
| 65 |
print(model.net)
|
| 66 |
|
|
|
|
| 78 |
hparams=config,
|
| 79 |
target_metric=config.target_metric,
|
| 80 |
seed=config.start_seed,
|
| 81 |
+
smi_ted_version=config.smi_ted_version,
|
| 82 |
checkpoints_folder=config.checkpoints_folder,
|
| 83 |
device=device,
|
| 84 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/finetune_regression.py
CHANGED
|
@@ -28,7 +28,7 @@ def main(config):
|
|
| 28 |
elif config.smi_ted_version == 'v2':
|
| 29 |
from smi_ted_large.load import load_smi_ted
|
| 30 |
|
| 31 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output)
|
| 32 |
model.net.apply(model._init_weights)
|
| 33 |
print(model.net)
|
| 34 |
|
|
@@ -48,6 +48,7 @@ def main(config):
|
|
| 48 |
hparams=config,
|
| 49 |
target_metric=config.target_metric,
|
| 50 |
seed=config.start_seed,
|
|
|
|
| 51 |
checkpoints_folder=config.checkpoints_folder,
|
| 52 |
device=device,
|
| 53 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
|
| 28 |
elif config.smi_ted_version == 'v2':
|
| 29 |
from smi_ted_large.load import load_smi_ted
|
| 30 |
|
| 31 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output, eval=False)
|
| 32 |
model.net.apply(model._init_weights)
|
| 33 |
print(model.net)
|
| 34 |
|
|
|
|
| 48 |
hparams=config,
|
| 49 |
target_metric=config.target_metric,
|
| 50 |
seed=config.start_seed,
|
| 51 |
+
smi_ted_version=config.smi_ted_version,
|
| 52 |
checkpoints_folder=config.checkpoints_folder,
|
| 53 |
device=device,
|
| 54 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/smi_ted_large/load.py
CHANGED
|
@@ -318,7 +318,7 @@ class Net(nn.Module):
|
|
| 318 |
|
| 319 |
class MoLEncoder(nn.Module):
|
| 320 |
|
| 321 |
-
def __init__(self, config, n_vocab):
|
| 322 |
super(MoLEncoder, self).__init__()
|
| 323 |
|
| 324 |
# embeddings
|
|
@@ -337,7 +337,7 @@ class MoLEncoder(nn.Module):
|
|
| 337 |
# unless we do deterministic_eval here, we will have random outputs
|
| 338 |
feature_map=partial(GeneralizedRandomFeatures,
|
| 339 |
n_dims=config['num_feats'],
|
| 340 |
-
deterministic_eval=
|
| 341 |
activation='gelu'
|
| 342 |
)
|
| 343 |
self.blocks = builder.get()
|
|
@@ -361,7 +361,7 @@ class MoLDecoder(nn.Module):
|
|
| 361 |
class Smi_ted(nn.Module):
|
| 362 |
"""materials.smi-ted-Large 738M Parameters"""
|
| 363 |
|
| 364 |
-
def __init__(self, tokenizer, config=None):
|
| 365 |
super(Smi_ted, self).__init__()
|
| 366 |
|
| 367 |
# configuration
|
|
@@ -373,11 +373,11 @@ class Smi_ted(nn.Module):
|
|
| 373 |
|
| 374 |
# instantiate modules
|
| 375 |
if self.config:
|
| 376 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
| 377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
| 378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
| 379 |
|
| 380 |
-
def load_checkpoint(self, ckpt_path,
|
| 381 |
# load checkpoint file
|
| 382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
| 383 |
|
|
@@ -388,7 +388,7 @@ class Smi_ted(nn.Module):
|
|
| 388 |
self._set_seed(self.config['seed'])
|
| 389 |
|
| 390 |
# instantiate modules
|
| 391 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
| 392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
| 393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
| 394 |
|
|
@@ -493,11 +493,12 @@ class Smi_ted(nn.Module):
|
|
| 493 |
def load_smi_ted(folder="./smi_ted_large",
|
| 494 |
ckpt_filename="smi-ted-Large_30.pt",
|
| 495 |
vocab_filename="bert_vocab_curated.txt",
|
| 496 |
-
n_output=1
|
|
|
|
| 497 |
):
|
| 498 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
| 499 |
model = Smi_ted(tokenizer)
|
| 500 |
-
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output)
|
| 501 |
print('Vocab size:', len(tokenizer.vocab))
|
| 502 |
print(f'[FINETUNE MODE - {str(model)}]')
|
| 503 |
return model
|
|
|
|
| 318 |
|
| 319 |
class MoLEncoder(nn.Module):
|
| 320 |
|
| 321 |
+
def __init__(self, config, n_vocab, eval=False):
|
| 322 |
super(MoLEncoder, self).__init__()
|
| 323 |
|
| 324 |
# embeddings
|
|
|
|
| 337 |
# unless we do deterministic_eval here, we will have random outputs
|
| 338 |
feature_map=partial(GeneralizedRandomFeatures,
|
| 339 |
n_dims=config['num_feats'],
|
| 340 |
+
deterministic_eval=eval),
|
| 341 |
activation='gelu'
|
| 342 |
)
|
| 343 |
self.blocks = builder.get()
|
|
|
|
| 361 |
class Smi_ted(nn.Module):
|
| 362 |
"""materials.smi-ted-Large 738M Parameters"""
|
| 363 |
|
| 364 |
+
def __init__(self, tokenizer, config=None, eval=False):
|
| 365 |
super(Smi_ted, self).__init__()
|
| 366 |
|
| 367 |
# configuration
|
|
|
|
| 373 |
|
| 374 |
# instantiate modules
|
| 375 |
if self.config:
|
| 376 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
| 377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
| 378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
| 379 |
|
| 380 |
+
def load_checkpoint(self, ckpt_path, n_outputm eval=False):
|
| 381 |
# load checkpoint file
|
| 382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
| 383 |
|
|
|
|
| 388 |
self._set_seed(self.config['seed'])
|
| 389 |
|
| 390 |
# instantiate modules
|
| 391 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
| 392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
| 393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
| 394 |
|
|
|
|
| 493 |
def load_smi_ted(folder="./smi_ted_large",
|
| 494 |
ckpt_filename="smi-ted-Large_30.pt",
|
| 495 |
vocab_filename="bert_vocab_curated.txt",
|
| 496 |
+
n_output=1,
|
| 497 |
+
eval=False
|
| 498 |
):
|
| 499 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
| 500 |
model = Smi_ted(tokenizer)
|
| 501 |
+
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output, eval=eval)
|
| 502 |
print('Vocab size:', len(tokenizer.vocab))
|
| 503 |
print(f'[FINETUNE MODE - {str(model)}]')
|
| 504 |
return model
|
smi-ted/finetune/smi_ted_light/load.py
CHANGED
|
@@ -318,7 +318,7 @@ class Net(nn.Module):
|
|
| 318 |
|
| 319 |
class MoLEncoder(nn.Module):
|
| 320 |
|
| 321 |
-
def __init__(self, config, n_vocab):
|
| 322 |
super(MoLEncoder, self).__init__()
|
| 323 |
|
| 324 |
# embeddings
|
|
@@ -337,7 +337,7 @@ class MoLEncoder(nn.Module):
|
|
| 337 |
# unless we do deterministic_eval here, we will have random outputs
|
| 338 |
feature_map=partial(GeneralizedRandomFeatures,
|
| 339 |
n_dims=config['num_feats'],
|
| 340 |
-
deterministic_eval=
|
| 341 |
activation='gelu'
|
| 342 |
)
|
| 343 |
self.blocks = builder.get()
|
|
@@ -361,7 +361,7 @@ class MoLDecoder(nn.Module):
|
|
| 361 |
class Smi_ted(nn.Module):
|
| 362 |
"""materials.smi-ted-Light 289M Parameters"""
|
| 363 |
|
| 364 |
-
def __init__(self, tokenizer, config=None):
|
| 365 |
super(Smi_ted, self).__init__()
|
| 366 |
|
| 367 |
# configuration
|
|
@@ -373,11 +373,11 @@ class Smi_ted(nn.Module):
|
|
| 373 |
|
| 374 |
# instantiate modules
|
| 375 |
if self.config:
|
| 376 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
| 377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
| 378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
| 379 |
|
| 380 |
-
def load_checkpoint(self, ckpt_path, n_output):
|
| 381 |
# load checkpoint file
|
| 382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
| 383 |
|
|
@@ -388,7 +388,7 @@ class Smi_ted(nn.Module):
|
|
| 388 |
self._set_seed(self.config['seed'])
|
| 389 |
|
| 390 |
# instantiate modules
|
| 391 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
| 392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
| 393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
| 394 |
|
|
@@ -493,11 +493,12 @@ class Smi_ted(nn.Module):
|
|
| 493 |
def load_smi_ted(folder="./smi_ted_light",
|
| 494 |
ckpt_filename="smi-ted-Light_40.pt",
|
| 495 |
vocab_filename="bert_vocab_curated.txt",
|
| 496 |
-
n_output=1
|
|
|
|
| 497 |
):
|
| 498 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
| 499 |
model = Smi_ted(tokenizer)
|
| 500 |
-
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output)
|
| 501 |
print('Vocab size:', len(tokenizer.vocab))
|
| 502 |
print(f'[FINETUNE MODE - {str(model)}]')
|
| 503 |
return model
|
|
|
|
| 318 |
|
| 319 |
class MoLEncoder(nn.Module):
|
| 320 |
|
| 321 |
+
def __init__(self, config, n_vocab, eval=False):
|
| 322 |
super(MoLEncoder, self).__init__()
|
| 323 |
|
| 324 |
# embeddings
|
|
|
|
| 337 |
# unless we do deterministic_eval here, we will have random outputs
|
| 338 |
feature_map=partial(GeneralizedRandomFeatures,
|
| 339 |
n_dims=config['num_feats'],
|
| 340 |
+
deterministic_eval=eval),
|
| 341 |
activation='gelu'
|
| 342 |
)
|
| 343 |
self.blocks = builder.get()
|
|
|
|
| 361 |
class Smi_ted(nn.Module):
|
| 362 |
"""materials.smi-ted-Light 289M Parameters"""
|
| 363 |
|
| 364 |
+
def __init__(self, tokenizer, config=None, eval=False):
|
| 365 |
super(Smi_ted, self).__init__()
|
| 366 |
|
| 367 |
# configuration
|
|
|
|
| 373 |
|
| 374 |
# instantiate modules
|
| 375 |
if self.config:
|
| 376 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
| 377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
| 378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
| 379 |
|
| 380 |
+
def load_checkpoint(self, ckpt_path, n_output, eval=False):
|
| 381 |
# load checkpoint file
|
| 382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
| 383 |
|
|
|
|
| 388 |
self._set_seed(self.config['seed'])
|
| 389 |
|
| 390 |
# instantiate modules
|
| 391 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
| 392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
| 393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
| 394 |
|
|
|
|
| 493 |
def load_smi_ted(folder="./smi_ted_light",
|
| 494 |
ckpt_filename="smi-ted-Light_40.pt",
|
| 495 |
vocab_filename="bert_vocab_curated.txt",
|
| 496 |
+
n_output=1,
|
| 497 |
+
eval=False
|
| 498 |
):
|
| 499 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
| 500 |
model = Smi_ted(tokenizer)
|
| 501 |
+
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output, eval=eval)
|
| 502 |
print('Vocab size:', len(tokenizer.vocab))
|
| 503 |
print(f'[FINETUNE MODE - {str(model)}]')
|
| 504 |
return model
|
smi-ted/finetune/trainers.py
CHANGED
|
@@ -14,6 +14,7 @@ import numpy as np
|
|
| 14 |
import random
|
| 15 |
import args
|
| 16 |
import os
|
|
|
|
| 17 |
from tqdm import tqdm
|
| 18 |
|
| 19 |
# Machine Learning
|
|
@@ -25,7 +26,7 @@ from utils import RMSE, sensitivity, specificity
|
|
| 25 |
class Trainer:
|
| 26 |
|
| 27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 28 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 29 |
# data
|
| 30 |
self.df_train = raw_data[0]
|
| 31 |
self.df_valid = raw_data[1]
|
|
@@ -39,6 +40,7 @@ class Trainer:
|
|
| 39 |
# config
|
| 40 |
self.target_metric = target_metric
|
| 41 |
self.seed = seed
|
|
|
|
| 42 |
self.checkpoints_folder = checkpoints_folder
|
| 43 |
self.save_every_epoch = save_every_epoch
|
| 44 |
self.save_ckpt = save_ckpt
|
|
@@ -115,28 +117,52 @@ class Trainer:
|
|
| 115 |
# update best loss
|
| 116 |
best_vloss = val_loss
|
| 117 |
|
| 118 |
-
def evaluate(self):
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
def _train_one_epoch(self):
|
| 137 |
raise NotImplementedError
|
| 138 |
|
| 139 |
-
def _validate_one_epoch(self, data_loader):
|
| 140 |
raise NotImplementedError
|
| 141 |
|
| 142 |
def _print_configuration(self):
|
|
@@ -203,9 +229,9 @@ class Trainer:
|
|
| 203 |
class TrainerRegressor(Trainer):
|
| 204 |
|
| 205 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 206 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 207 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 208 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 209 |
|
| 210 |
def _train_one_epoch(self):
|
| 211 |
running_loss = 0.0
|
|
@@ -239,11 +265,13 @@ class TrainerRegressor(Trainer):
|
|
| 239 |
|
| 240 |
return running_loss / len(self.train_loader)
|
| 241 |
|
| 242 |
-
def _validate_one_epoch(self, data_loader):
|
| 243 |
data_targets = []
|
| 244 |
data_preds = []
|
| 245 |
running_loss = 0.0
|
| 246 |
|
|
|
|
|
|
|
| 247 |
with torch.no_grad():
|
| 248 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 249 |
# Every data instance is an input + label pair
|
|
@@ -251,8 +279,8 @@ class TrainerRegressor(Trainer):
|
|
| 251 |
targets = targets.clone().detach().to(self.device)
|
| 252 |
|
| 253 |
# Make predictions for this batch
|
| 254 |
-
embeddings =
|
| 255 |
-
predictions =
|
| 256 |
|
| 257 |
# Compute the loss
|
| 258 |
loss = self.loss_fn(predictions, targets)
|
|
@@ -292,9 +320,9 @@ class TrainerRegressor(Trainer):
|
|
| 292 |
class TrainerClassifier(Trainer):
|
| 293 |
|
| 294 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 295 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 296 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 297 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 298 |
|
| 299 |
def _train_one_epoch(self):
|
| 300 |
running_loss = 0.0
|
|
@@ -328,11 +356,13 @@ class TrainerClassifier(Trainer):
|
|
| 328 |
|
| 329 |
return running_loss / len(self.train_loader)
|
| 330 |
|
| 331 |
-
def _validate_one_epoch(self, data_loader):
|
| 332 |
data_targets = []
|
| 333 |
data_preds = []
|
| 334 |
running_loss = 0.0
|
| 335 |
|
|
|
|
|
|
|
| 336 |
with torch.no_grad():
|
| 337 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 338 |
# Every data instance is an input + label pair
|
|
@@ -340,8 +370,8 @@ class TrainerClassifier(Trainer):
|
|
| 340 |
targets = targets.clone().detach().to(self.device)
|
| 341 |
|
| 342 |
# Make predictions for this batch
|
| 343 |
-
embeddings =
|
| 344 |
-
predictions =
|
| 345 |
|
| 346 |
# Compute the loss
|
| 347 |
loss = self.loss_fn(predictions, targets.long())
|
|
@@ -397,9 +427,9 @@ class TrainerClassifier(Trainer):
|
|
| 397 |
class TrainerClassifierMultitask(Trainer):
|
| 398 |
|
| 399 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 400 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 401 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 402 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 403 |
|
| 404 |
def _prepare_data(self):
|
| 405 |
# normalize dataset
|
|
@@ -464,12 +494,14 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 464 |
|
| 465 |
return running_loss / len(self.train_loader)
|
| 466 |
|
| 467 |
-
def _validate_one_epoch(self, data_loader):
|
| 468 |
data_targets = []
|
| 469 |
data_preds = []
|
| 470 |
data_masks = []
|
| 471 |
running_loss = 0.0
|
| 472 |
|
|
|
|
|
|
|
| 473 |
with torch.no_grad():
|
| 474 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 475 |
# Every data instance is an input + label pair + mask
|
|
@@ -477,8 +509,8 @@ class TrainerClassifierMultitask(Trainer):
|
|
| 477 |
targets = targets.clone().detach().to(self.device)
|
| 478 |
|
| 479 |
# Make predictions for this batch
|
| 480 |
-
embeddings =
|
| 481 |
-
predictions =
|
| 482 |
predictions = predictions * target_masks.to(self.device)
|
| 483 |
|
| 484 |
# Compute the loss
|
|
|
|
| 14 |
import random
|
| 15 |
import args
|
| 16 |
import os
|
| 17 |
+
import shutil
|
| 18 |
from tqdm import tqdm
|
| 19 |
|
| 20 |
# Machine Learning
|
|
|
|
| 26 |
class Trainer:
|
| 27 |
|
| 28 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 29 |
+
target_metric='rmse', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 30 |
# data
|
| 31 |
self.df_train = raw_data[0]
|
| 32 |
self.df_valid = raw_data[1]
|
|
|
|
| 40 |
# config
|
| 41 |
self.target_metric = target_metric
|
| 42 |
self.seed = seed
|
| 43 |
+
self.smi_ted_version = smi_ted_version
|
| 44 |
self.checkpoints_folder = checkpoints_folder
|
| 45 |
self.save_every_epoch = save_every_epoch
|
| 46 |
self.save_ckpt = save_ckpt
|
|
|
|
| 117 |
# update best loss
|
| 118 |
best_vloss = val_loss
|
| 119 |
|
| 120 |
+
def evaluate(self, verbose=True):
|
| 121 |
+
if verbose:
|
| 122 |
+
print("\n=====Test Evaluation=====")
|
| 123 |
+
|
| 124 |
+
if self.smi_ted_version == 'v1':
|
| 125 |
+
import smi_ted_light.load as load
|
| 126 |
+
elif self.smi_ted_version == 'v2':
|
| 127 |
+
import smi_ted_large.load as load
|
| 128 |
+
else:
|
| 129 |
+
raise Exception('Please, specify the SMI-TED version: `v1` or `v2`.')
|
| 130 |
+
|
| 131 |
+
# copy vocabulary to checkpoint folder
|
| 132 |
+
if not os.path.exists(os.path.join(self.checkpoints_folder, 'bert_vocab_curated.txt')):
|
| 133 |
+
smi_ted_path = os.path.dirname(load.__file__)
|
| 134 |
+
shutil.copy(os.path.join(smi_ted_path, 'bert_vocab_curated.txt'), self.checkpoints_folder)
|
| 135 |
+
|
| 136 |
+
# load model for inference
|
| 137 |
+
model_inf = load.load_smi_ted(
|
| 138 |
+
folder=self.checkpoints_folder,
|
| 139 |
+
ckpt_filename=self.last_filename,
|
| 140 |
+
eval=True,
|
| 141 |
+
).to(self.device)
|
| 142 |
+
|
| 143 |
+
# set model evaluation mode
|
| 144 |
+
model_inf.eval()
|
| 145 |
+
|
| 146 |
+
# evaluate on test set
|
| 147 |
+
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader, model_inf)
|
| 148 |
+
|
| 149 |
+
if verbose:
|
| 150 |
+
# show metrics
|
| 151 |
+
for m in tst_metrics.keys():
|
| 152 |
+
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
| 153 |
+
|
| 154 |
+
# save predictions
|
| 155 |
+
pd.DataFrame(tst_preds).to_csv(
|
| 156 |
+
os.path.join(
|
| 157 |
+
self.checkpoints_folder,
|
| 158 |
+
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
| 159 |
+
index=False
|
| 160 |
+
)
|
| 161 |
|
| 162 |
def _train_one_epoch(self):
|
| 163 |
raise NotImplementedError
|
| 164 |
|
| 165 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
| 166 |
raise NotImplementedError
|
| 167 |
|
| 168 |
def _print_configuration(self):
|
|
|
|
| 229 |
class TrainerRegressor(Trainer):
|
| 230 |
|
| 231 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 232 |
+
target_metric='rmse', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 233 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 234 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 235 |
|
| 236 |
def _train_one_epoch(self):
|
| 237 |
running_loss = 0.0
|
|
|
|
| 265 |
|
| 266 |
return running_loss / len(self.train_loader)
|
| 267 |
|
| 268 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
| 269 |
data_targets = []
|
| 270 |
data_preds = []
|
| 271 |
running_loss = 0.0
|
| 272 |
|
| 273 |
+
model = self.model if model is None else model
|
| 274 |
+
|
| 275 |
with torch.no_grad():
|
| 276 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 277 |
# Every data instance is an input + label pair
|
|
|
|
| 279 |
targets = targets.clone().detach().to(self.device)
|
| 280 |
|
| 281 |
# Make predictions for this batch
|
| 282 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
| 283 |
+
predictions = model.net(embeddings).squeeze()
|
| 284 |
|
| 285 |
# Compute the loss
|
| 286 |
loss = self.loss_fn(predictions, targets)
|
|
|
|
| 320 |
class TrainerClassifier(Trainer):
|
| 321 |
|
| 322 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 323 |
+
target_metric='roc-auc', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 324 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 325 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 326 |
|
| 327 |
def _train_one_epoch(self):
|
| 328 |
running_loss = 0.0
|
|
|
|
| 356 |
|
| 357 |
return running_loss / len(self.train_loader)
|
| 358 |
|
| 359 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
| 360 |
data_targets = []
|
| 361 |
data_preds = []
|
| 362 |
running_loss = 0.0
|
| 363 |
|
| 364 |
+
model = self.model if model is None else model
|
| 365 |
+
|
| 366 |
with torch.no_grad():
|
| 367 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 368 |
# Every data instance is an input + label pair
|
|
|
|
| 370 |
targets = targets.clone().detach().to(self.device)
|
| 371 |
|
| 372 |
# Make predictions for this batch
|
| 373 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
| 374 |
+
predictions = model.net(embeddings).squeeze()
|
| 375 |
|
| 376 |
# Compute the loss
|
| 377 |
loss = self.loss_fn(predictions, targets.long())
|
|
|
|
| 427 |
class TrainerClassifierMultitask(Trainer):
|
| 428 |
|
| 429 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
| 430 |
+
target_metric='roc-auc', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
| 431 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
| 432 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
| 433 |
|
| 434 |
def _prepare_data(self):
|
| 435 |
# normalize dataset
|
|
|
|
| 494 |
|
| 495 |
return running_loss / len(self.train_loader)
|
| 496 |
|
| 497 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
| 498 |
data_targets = []
|
| 499 |
data_preds = []
|
| 500 |
data_masks = []
|
| 501 |
running_loss = 0.0
|
| 502 |
|
| 503 |
+
model = self.model if model is None else model
|
| 504 |
+
|
| 505 |
with torch.no_grad():
|
| 506 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
| 507 |
# Every data instance is an input + label pair + mask
|
|
|
|
| 509 |
targets = targets.clone().detach().to(self.device)
|
| 510 |
|
| 511 |
# Make predictions for this batch
|
| 512 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
| 513 |
+
predictions = model.net(embeddings, multitask=True).squeeze()
|
| 514 |
predictions = predictions * target_masks.to(self.device)
|
| 515 |
|
| 516 |
# Compute the loss
|