--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - text-classification - generated_from_trainer datasets: - zefang-liu/phishing-email-dataset metrics: - accuracy model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: zefang-liu/phishing-email-dataset type: zefang-liu/phishing-email-dataset metrics: - name: Accuracy type: accuracy value: 0.9774617654950363 --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the zefang-liu/phishing-email-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0992 - Accuracy: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0634 | 1.0 | 1863 | 0.0950 | 0.9713 | | 0.0336 | 2.0 | 3726 | 0.0842 | 0.9785 | | 0.0269 | 3.0 | 5589 | 0.0835 | 0.9785 | | 0.0452 | 4.0 | 7452 | 0.1083 | 0.9777 | | 0.0233 | 5.0 | 9315 | 0.0992 | 0.9775 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1