Commit
·
e5a06fe
1
Parent(s):
f31d770
readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
- he
|
| 6 |
+
- robust-speech-event
|
| 7 |
+
model-index:
|
| 8 |
+
- name: wav2vec2-xls-r-300m-lm-hebrew
|
| 9 |
+
results: []
|
| 10 |
+
datasets:
|
| 11 |
+
- imvladikon/hebrew_speech_kan
|
| 12 |
+
- imvladikon/hebrew_speech_coursera
|
| 13 |
+
language:
|
| 14 |
+
- he
|
| 15 |
+
metrics:
|
| 16 |
+
- wer
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# wav2vec2-xls-r-300m-lm-hebrew
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset
|
| 22 |
+
with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
check package: https://github.com/imvladikon/wav2vec2-hebrew
|
| 28 |
+
|
| 29 |
+
or use transformers pipeline:
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
import torch
|
| 33 |
+
from datasets import load_dataset
|
| 34 |
+
from transformers import AutoModelForCTC, AutoProcessor
|
| 35 |
+
import torchaudio.functional as F
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew"
|
| 39 |
+
|
| 40 |
+
sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True))
|
| 41 |
+
|
| 42 |
+
sample = next(sample_iter)
|
| 43 |
+
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy()
|
| 44 |
+
|
| 45 |
+
model = AutoModelForCTC.from_pretrained(model_id)
|
| 46 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 47 |
+
|
| 48 |
+
input_values = processor(resampled_audio, return_tensors="pt").input_values
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
logits = model(input_values).logits
|
| 52 |
+
|
| 53 |
+
transcription = processor.batch_decode(logits.numpy()).text
|
| 54 |
+
print(transcription)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Intended uses & limitations
|
| 58 |
+
|
| 59 |
+
More information needed
|
| 60 |
+
|
| 61 |
+
## Training and evaluation data
|
| 62 |
+
|
| 63 |
+
More information needed
|
| 64 |
+
|
| 65 |
+
## Training procedure
|
| 66 |
+
|
| 67 |
+
### Training hyperparameters
|
| 68 |
+
|
| 69 |
+
The following hyperparameters were used during training:
|
| 70 |
+
- learning_rate: 0.0003
|
| 71 |
+
- train_batch_size: 64
|
| 72 |
+
- eval_batch_size: 16
|
| 73 |
+
- seed: 42
|
| 74 |
+
- gradient_accumulation_steps: 2
|
| 75 |
+
- total_train_batch_size: 128
|
| 76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 77 |
+
- lr_scheduler_type: linear
|
| 78 |
+
- lr_scheduler_warmup_steps: 500
|
| 79 |
+
- num_epochs: 100
|
| 80 |
+
- mixed_precision_training: Native AMP
|
| 81 |
+
|
| 82 |
+
### Training results
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
### Framework versions
|
| 86 |
+
|
| 87 |
+
- Transformers 4.16.0.dev0
|
| 88 |
+
- Pytorch 1.10.1+cu102
|
| 89 |
+
- Datasets 1.17.1.dev0
|
| 90 |
+
- Tokenizers 0.11.0
|