Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,114 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- inclusionAI/Ring-mini-linear-2.0
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
---
|
| 9 |
+
# Quantized Ring-Linear-2.0
|
| 10 |
+
|
| 11 |
+
## Introduction
|
| 12 |
+
|
| 13 |
+
To enable deployment of [Ring-Linear-2.0](https://github.com/inclusionAI/Ring-V2/blob/main/hybrid_linear/README.md
|
| 14 |
+
) on memory-constrained devices, we release quantized weights using the GPTQ INT4 format. Additionally, we evaluate the online FP8 quantization performance of `Ring-Linear-2.0` models, which closely approaches that of BF16 precision.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Model Downloads
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
| **Model** | **Maximum Supported Length** | **Download** |
|
| 22 |
+
|:----------------------:| :----------------: |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
| 23 |
+
| Ring-flash-linear-2.0-GPTQ-int4 | 128k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4) |
|
| 24 |
+
| Ring-mini-linear-2.0-GPTQ-int4 | 512k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4) |
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## Quickstart
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
### 🚀 vLLM
|
| 31 |
+
|
| 32 |
+
#### Environment Preparation
|
| 33 |
+
|
| 34 |
+
Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below:
|
| 35 |
+
```shell
|
| 36 |
+
pip install torch==2.7.0 torchvision==0.22.0
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
Then you should install our vLLM wheel package:
|
| 40 |
+
```shell
|
| 41 |
+
pip install https://media.githubusercontent.com/media/inclusionAI/Ring-V2/refs/heads/main/hybrid_linear/whls/vllm-0.8.5%2Bcuda12_8_gcc10_2_1-cp310-cp310-linux_x86_64.whl --no-deps --force-reinstall
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
#### Offline Inference
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from transformers import AutoTokenizer
|
| 48 |
+
from vllm import LLM, SamplingParams
|
| 49 |
+
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ring-mini-linear-2.0-GPTQ-int4")
|
| 51 |
+
|
| 52 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=1.0, max_tokens=16384)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
llm = LLM(model="inclusionAI/Ring-mini-linear-2.0-GPTQ-int4", dtype='auto', enable_prefix_caching=False, max_num_seqs=128)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
prompt = "Give me a short introduction to large language models."
|
| 59 |
+
messages = [
|
| 60 |
+
{"role": "user", "content": prompt}
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
text = tokenizer.apply_chat_template(
|
| 64 |
+
messages,
|
| 65 |
+
tokenize=False,
|
| 66 |
+
add_generation_prompt=True
|
| 67 |
+
)
|
| 68 |
+
outputs = llm.generate([text], sampling_params)
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
#### Online Inference
|
| 72 |
+
```shell
|
| 73 |
+
vllm serve inclusionAI/Ring-mini-linear-2.0-GPTQ-int4 \
|
| 74 |
+
--tensor-parallel-size 2 \
|
| 75 |
+
--pipeline-parallel-size 1 \
|
| 76 |
+
--gpu-memory-utilization 0.90 \
|
| 77 |
+
--max-num-seqs 512 \
|
| 78 |
+
--no-enable-prefix-caching
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
## Evaluation
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
We evaluate the INT4 and FP8 quantized models using several datasets. The FP8 quantization is applied via the quantization="fp8" argument in SGLang or vLLM.
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
### Ring-mini-linear-2.0
|
| 91 |
+
| **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** |
|
| 92 |
+
| :----------------: |:--------:|:-------:|:-------------:|
|
| 93 |
+
| AIME25 | 73.65 | 72.40 | 66.56 |
|
| 94 |
+
| AIME24 | 79.95 | 79.53 | 74.95 |
|
| 95 |
+
| LiveCodeBench| 59.53 | 58.42 | 56.29 |
|
| 96 |
+
| GPQA | 65.69 | 66.79 | 62.53 |
|
| 97 |
+
|
| 98 |
+
### Ring-flash-linear-2.0
|
| 99 |
+
| **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** |
|
| 100 |
+
| :----------------: |:--------:|:-------:| :-----------------------:|
|
| 101 |
+
| AIME25 | 85.10 | 84.22 | 82.88 |
|
| 102 |
+
| LiveCodeBench| 69.82 | 69.44 | 66.14 |
|
| 103 |
+
| GPQA | 72.85 | 72.95 | 71.72 |
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
## License
|
| 109 |
+
|
| 110 |
+
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ring-V2/blob/master/LICENSE).
|
| 111 |
+
|
| 112 |
+
## Citation
|
| 113 |
+
|
| 114 |
+
If you find our work helpful, feel free to give us a cite.
|