--- license: mit language: - en base_model: - inclusionAI/Ring-mini-linear-2.0 pipeline_tag: text-generation --- # Quantized Ring-Linear-2.0 ## Introduction To enable deployment of [Ring-Linear-2.0](https://github.com/inclusionAI/Ring-V2/blob/main/hybrid_linear/README.md ) on memory-constrained devices, we release quantized weights using the GPTQ INT4 format. Additionally, we evaluate the online FP8 quantization performance of `Ring-Linear-2.0` models, which closely approaches that of BF16 precision. ## Model Downloads | **Model** | **Maximum Supported Length** | **Download** | |:----------------------:| :----------------: |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | Ring-flash-linear-2.0-GPTQ-int4 | 128k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4) | | Ring-mini-linear-2.0-GPTQ-int4 | 512k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4) | ## Quickstart ### 🚀 vLLM #### Environment Preparation Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below: ```shell pip install torch==2.7.0 torchvision==0.22.0 ``` Then you should install our vLLM wheel package: ```shell pip install https://media.githubusercontent.com/media/inclusionAI/Ring-V2/refs/heads/main/hybrid_linear/whls/vllm-0.8.5%2Bcuda12_8_gcc10_2_1-cp310-cp310-linux_x86_64.whl --no-deps --force-reinstall ``` #### Offline Inference ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ring-mini-linear-2.0-GPTQ-int4") sampling_params = SamplingParams(temperature=0.6, top_p=1.0, max_tokens=16384) llm = LLM(model="inclusionAI/Ring-mini-linear-2.0-GPTQ-int4", dtype='auto', enable_prefix_caching=False, max_num_seqs=128) prompt = "Give me a short introduction to large language models." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = llm.generate([text], sampling_params) ``` #### Online Inference ```shell vllm serve inclusionAI/Ring-mini-linear-2.0-GPTQ-int4 \ --tensor-parallel-size 2 \ --pipeline-parallel-size 1 \ --gpu-memory-utilization 0.90 \ --max-num-seqs 512 \ --no-enable-prefix-caching ``` ## Evaluation We evaluate the INT4 and FP8 quantized models using several datasets. The FP8 quantization is applied via the quantization="fp8" argument in SGLang or vLLM. ### Ring-mini-linear-2.0 | **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** | | :----------------: |:--------:|:-------:|:-------------:| | AIME25 | 73.65 | 72.40 | 66.56 | | AIME24 | 79.95 | 79.53 | 74.95 | | LiveCodeBench| 59.53 | 58.42 | 56.29 | | GPQA | 65.69 | 66.79 | 62.53 | ### Ring-flash-linear-2.0 | **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** | | :----------------: |:--------:|:-------:| :-----------------------:| | AIME25 | 85.10 | 84.22 | 82.88 | | LiveCodeBench| 69.82 | 69.44 | 66.14 | | GPQA | 72.85 | 72.95 | 71.72 | ## License This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ring-V2/blob/master/LICENSE). ## Citation If you find our work helpful, feel free to give us a cite.