Upload 6 files
Browse files- .gitattributes +1 -0
- chunk_cache.py +223 -0
- modeling_gelinear.py +1198 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1757 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
chunk_cache.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.cache_utils import Cache
|
| 2 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class HybridCache(Cache):
|
| 11 |
+
"""
|
| 12 |
+
Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
|
| 13 |
+
and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
|
| 14 |
+
and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.
|
| 15 |
+
|
| 16 |
+
Parameters:
|
| 17 |
+
config (`PretrainedConfig):
|
| 18 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
| 19 |
+
batch_size (`int`):
|
| 20 |
+
The batch size with which the model will be used. Note that a new instance must be instantiated if a
|
| 21 |
+
smaller batch size is used.
|
| 22 |
+
max_cache_len (`int`):
|
| 23 |
+
The maximum sequence length with which the model will be used.
|
| 24 |
+
device (`torch.device` or `str`, *optional*):
|
| 25 |
+
The device on which the cache should be initialized. If you're using more than 1 computation device, you
|
| 26 |
+
should pass the `layer_device_map` argument instead.
|
| 27 |
+
dtype (torch.dtype, *optional*, defaults to `torch.float32`):
|
| 28 |
+
The default `dtype` to use when initializing the layer.
|
| 29 |
+
layer_device_map(`Dict[int, Union[str, torch.device, int]]]`, `optional`):
|
| 30 |
+
Mapping between the layers and its device. This is required when you are manually initializing the cache
|
| 31 |
+
and the model is splitted between differents gpus. You can know which layers mapped to which device by
|
| 32 |
+
checking the associated device_map: `model.hf_device_map`.
|
| 33 |
+
|
| 34 |
+
Example:
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
|
| 38 |
+
|
| 39 |
+
>>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
|
| 40 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
|
| 41 |
+
|
| 42 |
+
>>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
|
| 43 |
+
|
| 44 |
+
>>> # Prepare a cache class and pass it to model's forward
|
| 45 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
| 46 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
| 47 |
+
>>> past_key_values = HybridCache(config=model.config, batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
| 48 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
| 49 |
+
>>> outputs.past_key_values # access cache filled with key/values from generation
|
| 50 |
+
HybridCache()
|
| 51 |
+
```
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
# TODO (joao): dive deeper into gemma2 and paligemma -- there are reports of speed loss with compilation. Revert
|
| 55 |
+
# ALL changes from the PR that commented the line below when reactivating it.
|
| 56 |
+
# is_compileable = True
|
| 57 |
+
|
| 58 |
+
# TODO (joao): remove `=None` in non-optional arguments in v4.46. Remove from `OBJECTS_TO_IGNORE` as well.
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
config: PretrainedConfig,
|
| 62 |
+
batch_size: int = None,
|
| 63 |
+
max_cache_len: int = None,
|
| 64 |
+
device: Union[torch.device, str] = None,
|
| 65 |
+
dtype: torch.dtype = torch.float32,
|
| 66 |
+
max_batch_size: Optional[int] = None,
|
| 67 |
+
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
|
| 68 |
+
) -> None:
|
| 69 |
+
super().__init__()
|
| 70 |
+
if batch_size is not None:
|
| 71 |
+
logger.warning_once(
|
| 72 |
+
f"The 'batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in "
|
| 73 |
+
"v4.49. Use the more precisely named 'max_batch_size' argument instead."
|
| 74 |
+
)
|
| 75 |
+
if not hasattr(config, "sliding_window") or config.sliding_window is None:
|
| 76 |
+
raise ValueError(
|
| 77 |
+
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
|
| 78 |
+
"sliding window attention, please check if there is a `sliding_window` field in the model "
|
| 79 |
+
"config and it's not set to None."
|
| 80 |
+
)
|
| 81 |
+
self.max_cache_len = max_cache_len
|
| 82 |
+
self.max_batch_size = batch_size or max_batch_size
|
| 83 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
| 84 |
+
self.head_dim = (
|
| 85 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.dtype = dtype
|
| 89 |
+
self.num_key_value_heads = (
|
| 90 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
layer_switch = config.sliding_window_pattern if hasattr(config, "sliding_window_pattern") else 2 # 2 is for BC
|
| 94 |
+
self.is_sliding = torch.tensor(
|
| 95 |
+
[bool((i + 1) % layer_switch) for i in range(config.num_hidden_layers)], dtype=torch.bool
|
| 96 |
+
)
|
| 97 |
+
self.key_cache: List[torch.Tensor] = []
|
| 98 |
+
self.value_cache: List[torch.Tensor] = []
|
| 99 |
+
self.chunk_cache = {}
|
| 100 |
+
global_cache_shape = (self.max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
|
| 101 |
+
sliding_cache_shape = (
|
| 102 |
+
self.max_batch_size,
|
| 103 |
+
self.num_key_value_heads,
|
| 104 |
+
min(config.sliding_window, max_cache_len),
|
| 105 |
+
self.head_dim,
|
| 106 |
+
)
|
| 107 |
+
device = torch.device(device) if device is not None else None
|
| 108 |
+
for i in range(config.num_hidden_layers):
|
| 109 |
+
if layer_device_map is not None:
|
| 110 |
+
layer_device = layer_device_map[i]
|
| 111 |
+
else:
|
| 112 |
+
layer_device = device
|
| 113 |
+
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
| 114 |
+
# breaks when updating the cache.
|
| 115 |
+
cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
|
| 116 |
+
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=layer_device)
|
| 117 |
+
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=layer_device)
|
| 118 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
| 119 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
| 120 |
+
self.key_cache.append(new_layer_key_cache)
|
| 121 |
+
self.value_cache.append(new_layer_value_cache)
|
| 122 |
+
|
| 123 |
+
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
| 124 |
+
if cache_position.shape[0] > max_cache_len:
|
| 125 |
+
k_out = key_states[:, :, -max_cache_len:, :]
|
| 126 |
+
v_out = value_states[:, :, -max_cache_len:, :]
|
| 127 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
| 128 |
+
self.key_cache[layer_idx] += k_out
|
| 129 |
+
self.value_cache[layer_idx] += v_out
|
| 130 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
| 131 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
| 132 |
+
return key_states, value_states
|
| 133 |
+
|
| 134 |
+
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
| 135 |
+
cache_position = cache_position.clamp(0, max_cache_len - 1)
|
| 136 |
+
to_shift = cache_position >= max_cache_len - 1
|
| 137 |
+
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
|
| 138 |
+
k_out = k_out[:, :, indices]
|
| 139 |
+
v_out = v_out[:, :, indices]
|
| 140 |
+
|
| 141 |
+
k_out[:, :, cache_position] = key_states
|
| 142 |
+
v_out[:, :, cache_position] = value_states
|
| 143 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
| 144 |
+
self.key_cache[layer_idx].zero_()
|
| 145 |
+
self.value_cache[layer_idx].zero_()
|
| 146 |
+
|
| 147 |
+
self.key_cache[layer_idx] += k_out
|
| 148 |
+
self.value_cache[layer_idx] += v_out
|
| 149 |
+
return k_out, v_out
|
| 150 |
+
|
| 151 |
+
def _static_update(self, layer_idx,cache):
|
| 152 |
+
self.chunk_cache[layer_idx] = cache
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
def _get_chunk_cache(self,layer_idx):
|
| 156 |
+
self.chunk_cache.setdefault(layer_idx,None)
|
| 157 |
+
return self.chunk_cache[layer_idx]
|
| 158 |
+
|
| 159 |
+
def update(
|
| 160 |
+
self,
|
| 161 |
+
key_states: torch.Tensor,
|
| 162 |
+
value_states: torch.Tensor,
|
| 163 |
+
layer_idx: int,
|
| 164 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
| 165 |
+
) -> Tuple[torch.Tensor]:
|
| 166 |
+
cache_position = cache_kwargs.get("cache_position")
|
| 167 |
+
sliding_window = cache_kwargs.get("sliding_window")
|
| 168 |
+
|
| 169 |
+
# These two `if` blocks are only reached in multigpu and if `layer_device_map` is not passed. They are used
|
| 170 |
+
# when the cache is initialized in the forward pass (e.g. Gemma2)
|
| 171 |
+
if self.key_cache[layer_idx].device != key_states.device:
|
| 172 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(key_states.device)
|
| 173 |
+
if self.value_cache[layer_idx].device != value_states.device:
|
| 174 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(value_states.device)
|
| 175 |
+
|
| 176 |
+
k_out = self.key_cache[layer_idx]
|
| 177 |
+
v_out = self.value_cache[layer_idx]
|
| 178 |
+
key_states = key_states.to(k_out.dtype)
|
| 179 |
+
value_states = value_states.to(v_out.dtype)
|
| 180 |
+
|
| 181 |
+
if sliding_window:
|
| 182 |
+
update_fn = self._sliding_update
|
| 183 |
+
else:
|
| 184 |
+
update_fn = self._static_update
|
| 185 |
+
|
| 186 |
+
return update_fn(
|
| 187 |
+
cache_position,
|
| 188 |
+
layer_idx,
|
| 189 |
+
key_states,
|
| 190 |
+
value_states,
|
| 191 |
+
k_out,
|
| 192 |
+
v_out,
|
| 193 |
+
k_out.shape[2],
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
def get_max_cache_shape(self) -> Optional[int]:
|
| 197 |
+
return self.max_cache_len
|
| 198 |
+
|
| 199 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
| 200 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
| 201 |
+
# limit the check to the first batch member and head dimension.
|
| 202 |
+
# TODO: deprecate this function in favor of `cache_position`
|
| 203 |
+
if layer_idx != 0:
|
| 204 |
+
raise ValueError(
|
| 205 |
+
"`get_seq_length` on `HybridCache` may get inconsistent results depending on the layer index. "
|
| 206 |
+
"Using the `layer_idx` argument is not supported."
|
| 207 |
+
)
|
| 208 |
+
return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
|
| 209 |
+
|
| 210 |
+
def reset(self):
|
| 211 |
+
"""Resets the cache values while preserving the objects"""
|
| 212 |
+
for layer_idx in range(len(self.key_cache)):
|
| 213 |
+
# In-place ops prevent breaking the static address
|
| 214 |
+
self.key_cache[layer_idx].zero_()
|
| 215 |
+
self.value_cache[layer_idx].zero_()
|
| 216 |
+
|
| 217 |
+
@property
|
| 218 |
+
def batch_size(self):
|
| 219 |
+
logger.warning_once(
|
| 220 |
+
f"The 'batch_size' attribute of {self.__class__.__name__} is deprecated and will be removed in "
|
| 221 |
+
"v4.49. Use the more precisely named 'self.max_batch_size' attribute instead."
|
| 222 |
+
)
|
| 223 |
+
return self.max_batch_size
|
modeling_gelinear.py
ADDED
|
@@ -0,0 +1,1198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/gemma2/modular_gemma2.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_gemma2.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
+
# coding=utf-8
|
| 8 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
| 9 |
+
#
|
| 10 |
+
#
|
| 11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 12 |
+
# you may not use this file except in compliance with the License.
|
| 13 |
+
# You may obtain a copy of the License at
|
| 14 |
+
#
|
| 15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 16 |
+
#
|
| 17 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 20 |
+
# See the License for the specific language governing permissions and
|
| 21 |
+
# limitations under the License.
|
| 22 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
import torch.nn as nn
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
from transformers.activations import ACT2FN
|
| 28 |
+
from transformers.cache_utils import Cache, StaticCache
|
| 29 |
+
from transformers.generation import GenerationMixin
|
| 30 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 31 |
+
from transformers.modeling_outputs import (
|
| 32 |
+
BaseModelOutputWithPast,
|
| 33 |
+
CausalLMOutputWithPast,
|
| 34 |
+
SequenceClassifierOutputWithPast,
|
| 35 |
+
TokenClassifierOutput,
|
| 36 |
+
)
|
| 37 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 38 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 39 |
+
from transformers.processing_utils import Unpack
|
| 40 |
+
from transformers.utils import (
|
| 41 |
+
add_code_sample_docstrings,
|
| 42 |
+
add_start_docstrings,
|
| 43 |
+
add_start_docstrings_to_model_forward,
|
| 44 |
+
logging,
|
| 45 |
+
replace_return_docstrings,
|
| 46 |
+
)
|
| 47 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 48 |
+
from transformers.models.gemma2.configuration_gemma2 import Gemma2Config
|
| 49 |
+
from einops import rearrange
|
| 50 |
+
from .chunk_cache import HybridCache
|
| 51 |
+
import gc
|
| 52 |
+
logger = logging.get_logger(__name__)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
_CHECKPOINT_FOR_DOC = "google/gemma2-7b"
|
| 56 |
+
_CONFIG_FOR_DOC = "Gemma2Config"
|
| 57 |
+
|
| 58 |
+
class HedgehogFeatureMap(nn.Module):
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
num_heads: int,
|
| 62 |
+
head_dim: int, # input dim
|
| 63 |
+
feature_dim: int, # output dim
|
| 64 |
+
# dtype: torch.dtype,
|
| 65 |
+
# device: torch.device,
|
| 66 |
+
bias: bool = False,
|
| 67 |
+
eps: float = 1e-12,
|
| 68 |
+
):
|
| 69 |
+
super().__init__()
|
| 70 |
+
|
| 71 |
+
self.layer = nn.Parameter(
|
| 72 |
+
torch.zeros(
|
| 73 |
+
(num_heads, head_dim, feature_dim),
|
| 74 |
+
# dtype=dtype,
|
| 75 |
+
# device=device,
|
| 76 |
+
)
|
| 77 |
+
)
|
| 78 |
+
nn.init.kaiming_uniform_(self.layer)
|
| 79 |
+
if bias:
|
| 80 |
+
self.bias = nn.Parameter(
|
| 81 |
+
torch.zeros(
|
| 82 |
+
(1, num_heads, 1, 1),
|
| 83 |
+
# dtype=dtype,
|
| 84 |
+
# device=device,
|
| 85 |
+
)
|
| 86 |
+
)
|
| 87 |
+
nn.init.kaiming_uniform_(self.bias)
|
| 88 |
+
else:
|
| 89 |
+
self.bias = 0.0 # hack
|
| 90 |
+
self.eps = eps
|
| 91 |
+
|
| 92 |
+
def forward(self, x: torch.Tensor):
|
| 93 |
+
"""
|
| 94 |
+
x = (batch_size, num_heads, seq_len, head_dim)
|
| 95 |
+
"""
|
| 96 |
+
output = torch.einsum("hdf,bhld->bhlf", self.layer, x) + self.bias
|
| 97 |
+
output = torch.cat(
|
| 98 |
+
[torch.softmax(output, dim=-1), torch.softmax(-output, dim=-1)], dim=-1
|
| 99 |
+
).clamp(min=self.eps)
|
| 100 |
+
return output
|
| 101 |
+
|
| 102 |
+
def pad(x, chunk_size=64):
|
| 103 |
+
T = x.shape[-2]
|
| 104 |
+
padded_seq_len = ceildiv(T, chunk_size) * chunk_size
|
| 105 |
+
if x.shape[-2] % chunk_size != 0:
|
| 106 |
+
x = F.pad(x, (0, 0, 0, padded_seq_len - T))
|
| 107 |
+
|
| 108 |
+
return x
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def ceildiv(a, b):
|
| 112 |
+
return -(a // -b)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# def chunk_linear_attn(q, k, v, chunk_size=64, cached_kv=None):
|
| 116 |
+
# q, k, v = map(lambda x: pad(x), [q, k, v])
|
| 117 |
+
# q = rearrange(q, "b h (n c) d -> b h n c d", c=chunk_size) * (q.shape[-1] ** -0.5)
|
| 118 |
+
# k = rearrange(k, "b h (n c) d -> b h n c d", c=chunk_size)
|
| 119 |
+
# v = rearrange(v, "b h (n c) d -> b h n c d", c=chunk_size)
|
| 120 |
+
# kv = k.transpose(-1, -2) @ v
|
| 121 |
+
# kv = kv.cumsum(2)
|
| 122 |
+
# if cached_kv is not None:
|
| 123 |
+
# kv += cached_kv
|
| 124 |
+
# kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
|
| 125 |
+
# inter = q @ kv # (b, h, n, c, d) @ (b, h, n, d, d) -> (b, h, n, c, d)
|
| 126 |
+
# intra = (
|
| 127 |
+
# (q @ k.transpose(-1, -2)).masked_fill_(
|
| 128 |
+
# torch.triu(
|
| 129 |
+
# torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device),
|
| 130 |
+
# diagonal=1,
|
| 131 |
+
# ),
|
| 132 |
+
# 0,
|
| 133 |
+
# )
|
| 134 |
+
# ) @ v
|
| 135 |
+
# o = inter + intra
|
| 136 |
+
# return rearrange(o, "b h n c d -> b h (n c) d")
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def chunk_linear_attn(q, k, v, chunk_size=64, cached_kv=None):
|
| 140 |
+
q, k, v = map(lambda x: pad(x,chunk_size=chunk_size), [q, k, v])
|
| 141 |
+
q = rearrange(q, "b h (n c) d -> b h n c d", c=chunk_size) * (q.shape[-1] ** -0.5)
|
| 142 |
+
k = rearrange(k, "b h (n c) d -> b h n c d", c=chunk_size)
|
| 143 |
+
v = rearrange(v, "b h (n c) d -> b h n c d", c=chunk_size)
|
| 144 |
+
kv = k.transpose(-1, -2) @ v
|
| 145 |
+
if cached_kv is None:
|
| 146 |
+
kv = kv.cumsum(2)
|
| 147 |
+
cached_kv = kv[:,:,-1:,...]
|
| 148 |
+
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
|
| 149 |
+
inter = q @ kv # (b, h, n, c, d) @ (b, h, n, d, d) -> (b, h, n, c, d)
|
| 150 |
+
intra = (
|
| 151 |
+
(q @ k.transpose(-1, -2)).masked_fill_(
|
| 152 |
+
torch.triu(
|
| 153 |
+
torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device),
|
| 154 |
+
diagonal=1,
|
| 155 |
+
),
|
| 156 |
+
0,
|
| 157 |
+
)
|
| 158 |
+
) @ v
|
| 159 |
+
o = inter + intra
|
| 160 |
+
elif cached_kv is not None:
|
| 161 |
+
kv += cached_kv
|
| 162 |
+
cached_kv = kv
|
| 163 |
+
o = q @ kv
|
| 164 |
+
return rearrange(o, "b h n c d -> b h (n c) d"), cached_kv
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class Gemma2LinearAttention(nn.Module):
|
| 168 |
+
def __init__(self, config: Gemma2Config, layer_idx: int):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.config = config
|
| 171 |
+
self.layer_idx = layer_idx
|
| 172 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 173 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 174 |
+
self.scaling = config.query_pre_attn_scalar**-0.5
|
| 175 |
+
self.attention_dropout = self.config.attention_dropout
|
| 176 |
+
self.is_causal = True
|
| 177 |
+
|
| 178 |
+
self.q_proj = nn.Linear(
|
| 179 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 180 |
+
)
|
| 181 |
+
self.k_proj = nn.Linear(
|
| 182 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 183 |
+
)
|
| 184 |
+
self.v_proj = nn.Linear(
|
| 185 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 186 |
+
)
|
| 187 |
+
self.o_proj = nn.Linear(
|
| 188 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 189 |
+
)
|
| 190 |
+
self.attn_logit_softcapping = self.config.attn_logit_softcapping
|
| 191 |
+
self.feature_dim = config.feature_dim
|
| 192 |
+
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
| 193 |
+
self.feature_map_q = HedgehogFeatureMap(
|
| 194 |
+
num_heads=config.num_attention_heads,
|
| 195 |
+
head_dim=self.head_dim,
|
| 196 |
+
feature_dim=self.feature_dim,
|
| 197 |
+
)
|
| 198 |
+
self.feature_map_k = HedgehogFeatureMap(
|
| 199 |
+
num_heads=config.num_attention_heads,
|
| 200 |
+
head_dim=self.head_dim,
|
| 201 |
+
feature_dim=self.feature_dim,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def forward(
|
| 205 |
+
self,
|
| 206 |
+
hidden_states: torch.Tensor,
|
| 207 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 208 |
+
attention_mask: Optional[torch.Tensor],
|
| 209 |
+
past_key_value: Optional[Cache] = None,
|
| 210 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 211 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 212 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 213 |
+
input_shape = hidden_states.shape[:-1]
|
| 214 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 215 |
+
batch_size = hidden_states.shape[0]
|
| 216 |
+
seq_len = hidden_states.shape[1]
|
| 217 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 218 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 219 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 220 |
+
|
| 221 |
+
cos, sin = position_embeddings
|
| 222 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 226 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 227 |
+
|
| 228 |
+
query_states = self.feature_map_q(query_states)
|
| 229 |
+
key_states = self.feature_map_k(key_states)
|
| 230 |
+
chunk_size = 64
|
| 231 |
+
cache = None
|
| 232 |
+
if past_key_value is not None:
|
| 233 |
+
if past_key_value._get_chunk_cache(self.layer_idx) is not None:
|
| 234 |
+
cache = past_key_value._get_chunk_cache(self.layer_idx)
|
| 235 |
+
chunk_size = 1
|
| 236 |
+
output, cache = chunk_linear_attn(query_states, key_states, value_states,chunk_size=chunk_size, cached_kv=cache)
|
| 237 |
+
past_key_value._static_update(self.layer_idx,cache)
|
| 238 |
+
|
| 239 |
+
output = (
|
| 240 |
+
output.transpose(1, 2)
|
| 241 |
+
.contiguous()[:, :seq_len, ...]
|
| 242 |
+
.view(batch_size, seq_len, -1)
|
| 243 |
+
)
|
| 244 |
+
attn_output = self.o_proj(output)
|
| 245 |
+
return attn_output, output
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class Gemma2RMSNorm(nn.Module):
|
| 249 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 250 |
+
super().__init__()
|
| 251 |
+
self.eps = eps
|
| 252 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
| 253 |
+
|
| 254 |
+
def _norm(self, x):
|
| 255 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 256 |
+
|
| 257 |
+
def forward(self, x):
|
| 258 |
+
output = self._norm(x.float())
|
| 259 |
+
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
|
| 260 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
| 261 |
+
output = output * (1.0 + self.weight.float())
|
| 262 |
+
return output.type_as(x)
|
| 263 |
+
|
| 264 |
+
def extra_repr(self):
|
| 265 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class Gemma2MLP(nn.Module):
|
| 269 |
+
def __init__(self, config):
|
| 270 |
+
super().__init__()
|
| 271 |
+
self.config = config
|
| 272 |
+
self.hidden_size = config.hidden_size
|
| 273 |
+
self.intermediate_size = config.intermediate_size
|
| 274 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 275 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 276 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 277 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
| 278 |
+
|
| 279 |
+
def forward(self, x):
|
| 280 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 281 |
+
return down_proj
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def rotate_half(x):
|
| 285 |
+
"""Rotates half the hidden dims of the input."""
|
| 286 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 287 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 288 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 292 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
q (`torch.Tensor`): The query tensor.
|
| 296 |
+
k (`torch.Tensor`): The key tensor.
|
| 297 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 298 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 299 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 300 |
+
Deprecated and unused.
|
| 301 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 302 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 303 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 304 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 305 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 306 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 307 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 308 |
+
Returns:
|
| 309 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 310 |
+
"""
|
| 311 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 312 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 313 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 314 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 315 |
+
return q_embed, k_embed
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 319 |
+
"""
|
| 320 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 321 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 322 |
+
"""
|
| 323 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 324 |
+
if n_rep == 1:
|
| 325 |
+
return hidden_states
|
| 326 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 327 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def eager_attention_forward(
|
| 331 |
+
module: nn.Module,
|
| 332 |
+
query: torch.Tensor,
|
| 333 |
+
key: torch.Tensor,
|
| 334 |
+
value: torch.Tensor,
|
| 335 |
+
attention_mask: Optional[torch.Tensor],
|
| 336 |
+
dropout: float = 0.0,
|
| 337 |
+
scaling: Optional[float] = None,
|
| 338 |
+
softcap: Optional[float] = None,
|
| 339 |
+
**kwargs,
|
| 340 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 341 |
+
if scaling is None:
|
| 342 |
+
scaling = module.head_dim**-0.5
|
| 343 |
+
|
| 344 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 345 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 346 |
+
|
| 347 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 348 |
+
|
| 349 |
+
if softcap is not None:
|
| 350 |
+
attn_weights = attn_weights / softcap
|
| 351 |
+
attn_weights = torch.tanh(attn_weights)
|
| 352 |
+
attn_weights = attn_weights * softcap
|
| 353 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 354 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 355 |
+
attn_weights = attn_weights + causal_mask
|
| 356 |
+
|
| 357 |
+
# upcast attention to fp32
|
| 358 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 359 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 360 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 361 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 362 |
+
return attn_output, attn_weights
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
class Gemma2Attention(nn.Module):
|
| 366 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 367 |
+
|
| 368 |
+
def __init__(self, config: Gemma2Config, layer_idx: int):
|
| 369 |
+
super().__init__()
|
| 370 |
+
self.config = config
|
| 371 |
+
self.layer_idx = layer_idx
|
| 372 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 373 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 374 |
+
self.scaling = config.query_pre_attn_scalar**-0.5
|
| 375 |
+
self.attention_dropout = self.config.attention_dropout
|
| 376 |
+
self.is_causal = True
|
| 377 |
+
|
| 378 |
+
self.q_proj = nn.Linear(
|
| 379 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 380 |
+
)
|
| 381 |
+
self.k_proj = nn.Linear(
|
| 382 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 383 |
+
)
|
| 384 |
+
self.v_proj = nn.Linear(
|
| 385 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 386 |
+
)
|
| 387 |
+
self.o_proj = nn.Linear(
|
| 388 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 389 |
+
)
|
| 390 |
+
self.attn_logit_softcapping = self.config.attn_logit_softcapping
|
| 391 |
+
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
| 392 |
+
|
| 393 |
+
def forward(
|
| 394 |
+
self,
|
| 395 |
+
hidden_states: torch.Tensor,
|
| 396 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 397 |
+
attention_mask: Optional[torch.Tensor],
|
| 398 |
+
past_key_value: Optional[Cache] = None,
|
| 399 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 400 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 401 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 402 |
+
input_shape = hidden_states.shape[:-1]
|
| 403 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 404 |
+
|
| 405 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 406 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 407 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 408 |
+
|
| 409 |
+
cos, sin = position_embeddings
|
| 410 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 411 |
+
|
| 412 |
+
if past_key_value is not None:
|
| 413 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 414 |
+
cache_kwargs = {
|
| 415 |
+
"sin": sin,
|
| 416 |
+
"cos": cos,
|
| 417 |
+
"cache_position": cache_position,
|
| 418 |
+
"sliding_window": self.sliding_window,
|
| 419 |
+
}
|
| 420 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 421 |
+
|
| 422 |
+
# Here we need to slice as we use a static cache by default, but FA2 does not support it
|
| 423 |
+
if attention_mask is not None and self.config._attn_implementation == "flash_attention_2":
|
| 424 |
+
seq_len = attention_mask.shape[-1]
|
| 425 |
+
key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :]
|
| 426 |
+
|
| 427 |
+
attention_interface: Callable = eager_attention_forward
|
| 428 |
+
if self.config._attn_implementation != "eager":
|
| 429 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
| 430 |
+
logger.warning_once(
|
| 431 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 432 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 433 |
+
)
|
| 434 |
+
else:
|
| 435 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 436 |
+
|
| 437 |
+
attn_output, attn_weights = attention_interface(
|
| 438 |
+
self,
|
| 439 |
+
query_states,
|
| 440 |
+
key_states,
|
| 441 |
+
value_states,
|
| 442 |
+
attention_mask,
|
| 443 |
+
dropout=self.attention_dropout if self.training else 0.0,
|
| 444 |
+
scaling=self.scaling,
|
| 445 |
+
sliding_window=self.sliding_window,
|
| 446 |
+
softcap=self.attn_logit_softcapping,
|
| 447 |
+
**kwargs,
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 451 |
+
attn_output = self.o_proj(attn_output)
|
| 452 |
+
return attn_output, attn_weights
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class Gemma2DecoderLayer(nn.Module):
|
| 456 |
+
def __init__(self, config: Gemma2Config, layer_idx: int):
|
| 457 |
+
super().__init__()
|
| 458 |
+
self.hidden_size = config.hidden_size
|
| 459 |
+
self.config = config
|
| 460 |
+
self.is_sliding = not bool(layer_idx % 2)
|
| 461 |
+
if self.is_sliding:
|
| 462 |
+
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
|
| 463 |
+
else:
|
| 464 |
+
self.self_attn = Gemma2LinearAttention(config=config, layer_idx=layer_idx)
|
| 465 |
+
self.mlp = Gemma2MLP(config)
|
| 466 |
+
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 467 |
+
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 468 |
+
|
| 469 |
+
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 470 |
+
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 471 |
+
self.sliding_window = config.sliding_window
|
| 472 |
+
|
| 473 |
+
def forward(
|
| 474 |
+
self,
|
| 475 |
+
hidden_states: torch.Tensor,
|
| 476 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 477 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 478 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 479 |
+
past_key_value: Optional[Cache] = None,
|
| 480 |
+
output_attentions: Optional[bool] = False,
|
| 481 |
+
use_cache: Optional[bool] = False,
|
| 482 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 483 |
+
last_cache_position: int = 0,
|
| 484 |
+
**kwargs,
|
| 485 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 486 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
| 487 |
+
# In prefill, we may be larger than sliding window
|
| 488 |
+
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
|
| 489 |
+
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
|
| 490 |
+
# thus we must slice from the right (at most `effective_seq_len` elements)
|
| 491 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 492 |
+
attention_mask = attention_mask[:, -effective_seq_len:]
|
| 493 |
+
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
|
| 494 |
+
# from the left, with an offset if we are beyond the sliding window
|
| 495 |
+
else:
|
| 496 |
+
min_dtype = torch.finfo(attention_mask.dtype).min
|
| 497 |
+
sliding_window_mask = torch.tril(
|
| 498 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
| 499 |
+
)
|
| 500 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
| 501 |
+
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
|
| 502 |
+
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
|
| 503 |
+
offset = last_cache_position - effective_seq_len
|
| 504 |
+
# Should only be used when beyond the sliding window (i.e. offset > 0)
|
| 505 |
+
offset = max(0, offset)
|
| 506 |
+
attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len]
|
| 507 |
+
|
| 508 |
+
residual = hidden_states
|
| 509 |
+
|
| 510 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 511 |
+
|
| 512 |
+
# Self Attention
|
| 513 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 514 |
+
hidden_states=hidden_states,
|
| 515 |
+
position_embeddings=position_embeddings,
|
| 516 |
+
attention_mask=attention_mask,
|
| 517 |
+
position_ids=position_ids,
|
| 518 |
+
past_key_value=past_key_value,
|
| 519 |
+
output_attentions=output_attentions,
|
| 520 |
+
use_cache=use_cache,
|
| 521 |
+
cache_position=cache_position,
|
| 522 |
+
**kwargs,
|
| 523 |
+
)
|
| 524 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 525 |
+
hidden_states = residual + hidden_states
|
| 526 |
+
|
| 527 |
+
residual = hidden_states
|
| 528 |
+
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
| 529 |
+
hidden_states = self.mlp(hidden_states)
|
| 530 |
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
| 531 |
+
hidden_states = residual + hidden_states
|
| 532 |
+
|
| 533 |
+
outputs = (hidden_states,)
|
| 534 |
+
|
| 535 |
+
if output_attentions:
|
| 536 |
+
outputs += (self_attn_weights,)
|
| 537 |
+
|
| 538 |
+
return outputs
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class Gemma2RotaryEmbedding(nn.Module):
|
| 542 |
+
def __init__(self, config: Gemma2Config, device=None):
|
| 543 |
+
super().__init__()
|
| 544 |
+
# BC: "rope_type" was originally "type"
|
| 545 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 546 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 547 |
+
else:
|
| 548 |
+
self.rope_type = "default"
|
| 549 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 550 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 551 |
+
|
| 552 |
+
self.config = config
|
| 553 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 554 |
+
|
| 555 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 556 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 557 |
+
self.original_inv_freq = self.inv_freq
|
| 558 |
+
|
| 559 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 560 |
+
"""
|
| 561 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 562 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 563 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 564 |
+
"""
|
| 565 |
+
seq_len = torch.max(position_ids) + 1
|
| 566 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 567 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
| 568 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 569 |
+
self.max_seq_len_cached = seq_len
|
| 570 |
+
|
| 571 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 572 |
+
# This .to() is needed if the model has been moved to a device after being initialized (because
|
| 573 |
+
# the buffer is automatically moved, but not the original copy)
|
| 574 |
+
self.original_inv_freq = self.original_inv_freq.to(device)
|
| 575 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 576 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 577 |
+
|
| 578 |
+
@torch.no_grad()
|
| 579 |
+
def forward(self, x, position_ids):
|
| 580 |
+
if "dynamic" in self.rope_type:
|
| 581 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 582 |
+
|
| 583 |
+
# Core RoPE block
|
| 584 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 585 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 586 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 587 |
+
device_type = x.device.type
|
| 588 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 589 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 590 |
+
freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
|
| 591 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 592 |
+
cos = emb.cos()
|
| 593 |
+
sin = emb.sin()
|
| 594 |
+
|
| 595 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 596 |
+
cos = cos * self.attention_scaling
|
| 597 |
+
sin = sin * self.attention_scaling
|
| 598 |
+
|
| 599 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
GEMMA2_START_DOCSTRING = r"""
|
| 603 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 604 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 605 |
+
etc.)
|
| 606 |
+
|
| 607 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 608 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 609 |
+
and behavior.
|
| 610 |
+
|
| 611 |
+
Parameters:
|
| 612 |
+
config ([`Gemma2Config`]):
|
| 613 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 614 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 615 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 616 |
+
"""
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
@add_start_docstrings(
|
| 620 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
| 621 |
+
GEMMA2_START_DOCSTRING,
|
| 622 |
+
)
|
| 623 |
+
class Gemma2PreTrainedModel(PreTrainedModel):
|
| 624 |
+
config_class = Gemma2Config
|
| 625 |
+
base_model_prefix = "model"
|
| 626 |
+
supports_gradient_checkpointing = True
|
| 627 |
+
_no_split_modules = ["Gemma2DecoderLayer"]
|
| 628 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 629 |
+
_supports_flash_attn_2 = True
|
| 630 |
+
_supports_sdpa = True
|
| 631 |
+
_supports_flex_attn = True
|
| 632 |
+
_supports_cache_class = True
|
| 633 |
+
_supports_quantized_cache = True
|
| 634 |
+
_supports_static_cache = True
|
| 635 |
+
_supports_attention_backend = True
|
| 636 |
+
|
| 637 |
+
def _init_weights(self, module):
|
| 638 |
+
std = self.config.initializer_range
|
| 639 |
+
if isinstance(module, nn.Linear):
|
| 640 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 641 |
+
if module.bias is not None:
|
| 642 |
+
module.bias.data.zero_()
|
| 643 |
+
elif isinstance(module, nn.Embedding):
|
| 644 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 645 |
+
if module.padding_idx is not None:
|
| 646 |
+
module.weight.data[module.padding_idx].zero_()
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
GEMMA2_INPUTS_DOCSTRING = r"""
|
| 650 |
+
Args:
|
| 651 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 652 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 653 |
+
it.
|
| 654 |
+
|
| 655 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 656 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 657 |
+
|
| 658 |
+
[What are input IDs?](../glossary#input-ids)
|
| 659 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 660 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 661 |
+
|
| 662 |
+
- 1 for tokens that are **not masked**,
|
| 663 |
+
- 0 for tokens that are **masked**.
|
| 664 |
+
|
| 665 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 666 |
+
|
| 667 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 668 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 669 |
+
|
| 670 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 671 |
+
`past_key_values`).
|
| 672 |
+
|
| 673 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 674 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 675 |
+
information on the default strategy.
|
| 676 |
+
|
| 677 |
+
- 1 indicates the head is **not masked**,
|
| 678 |
+
- 0 indicates the head is **masked**.
|
| 679 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 680 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 681 |
+
config.n_positions - 1]`.
|
| 682 |
+
|
| 683 |
+
[What are position IDs?](../glossary#position-ids)
|
| 684 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 685 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 686 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 687 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 688 |
+
|
| 689 |
+
Two formats are allowed:
|
| 690 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 691 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 692 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 693 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 694 |
+
cache format.
|
| 695 |
+
|
| 696 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 697 |
+
legacy cache format will be returned.
|
| 698 |
+
|
| 699 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 700 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 701 |
+
of shape `(batch_size, sequence_length)`.
|
| 702 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 703 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 704 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 705 |
+
model's internal embedding lookup matrix.
|
| 706 |
+
use_cache (`bool`, *optional*):
|
| 707 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 708 |
+
`past_key_values`).
|
| 709 |
+
output_attentions (`bool`, *optional*):
|
| 710 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 711 |
+
tensors for more detail.
|
| 712 |
+
output_hidden_states (`bool`, *optional*):
|
| 713 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 714 |
+
more detail.
|
| 715 |
+
return_dict (`bool`, *optional*):
|
| 716 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 717 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 718 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 719 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 720 |
+
the complete sequence length.
|
| 721 |
+
"""
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
@add_start_docstrings(
|
| 725 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
| 726 |
+
GEMMA2_START_DOCSTRING,
|
| 727 |
+
)
|
| 728 |
+
class Gemma2Model(Gemma2PreTrainedModel):
|
| 729 |
+
"""
|
| 730 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
|
| 731 |
+
|
| 732 |
+
Args:
|
| 733 |
+
config: Gemma2Config
|
| 734 |
+
"""
|
| 735 |
+
|
| 736 |
+
def __init__(self, config: Gemma2Config):
|
| 737 |
+
super().__init__(config)
|
| 738 |
+
self.padding_idx = config.pad_token_id
|
| 739 |
+
self.vocab_size = config.vocab_size
|
| 740 |
+
|
| 741 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 742 |
+
self.layers = nn.ModuleList(
|
| 743 |
+
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 744 |
+
)
|
| 745 |
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 746 |
+
self.rotary_emb = Gemma2RotaryEmbedding(config=config)
|
| 747 |
+
self.gradient_checkpointing = False
|
| 748 |
+
self.past_key_values = None
|
| 749 |
+
# Initialize weights and apply final processing
|
| 750 |
+
self.post_init()
|
| 751 |
+
|
| 752 |
+
def get_input_embeddings(self):
|
| 753 |
+
return self.embed_tokens
|
| 754 |
+
|
| 755 |
+
def set_input_embeddings(self, value):
|
| 756 |
+
self.embed_tokens = value
|
| 757 |
+
|
| 758 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
| 759 |
+
def forward(
|
| 760 |
+
self,
|
| 761 |
+
input_ids: torch.LongTensor = None,
|
| 762 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 763 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 764 |
+
past_key_values: Optional[HybridCache] = None,
|
| 765 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 766 |
+
use_cache: Optional[bool] = None,
|
| 767 |
+
output_attentions: Optional[bool] = None,
|
| 768 |
+
output_hidden_states: Optional[bool] = None,
|
| 769 |
+
return_dict: Optional[bool] = None,
|
| 770 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 771 |
+
last_cache_position: Optional[int] = None,
|
| 772 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 773 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 774 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 775 |
+
output_hidden_states = (
|
| 776 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 777 |
+
)
|
| 778 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 779 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 780 |
+
|
| 781 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 782 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 783 |
+
|
| 784 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 785 |
+
logger.warning_once(
|
| 786 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 787 |
+
)
|
| 788 |
+
use_cache = False
|
| 789 |
+
|
| 790 |
+
if inputs_embeds is None:
|
| 791 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 792 |
+
# if use_cache and past_key_values is None and not self.training:
|
| 793 |
+
# batch_size, seq_len, _ = inputs_embeds.shape
|
| 794 |
+
# # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
|
| 795 |
+
# past_key_values = HybridCache(
|
| 796 |
+
# self.config,
|
| 797 |
+
# max_batch_size=batch_size,
|
| 798 |
+
# max_cache_len=seq_len,
|
| 799 |
+
# dtype=inputs_embeds.dtype,
|
| 800 |
+
# device=self.device,
|
| 801 |
+
# )
|
| 802 |
+
old_key_cache = past_key_values.key_cache
|
| 803 |
+
old_value_cache = past_key_values.value_cache
|
| 804 |
+
if self.past_key_values is None:
|
| 805 |
+
self.past_key_values = HybridCache(
|
| 806 |
+
self.config,
|
| 807 |
+
max_batch_size=past_key_values.max_batch_size,
|
| 808 |
+
max_cache_len=past_key_values.max_cache_len,
|
| 809 |
+
dtype=inputs_embeds.dtype,
|
| 810 |
+
device=self.device,
|
| 811 |
+
)
|
| 812 |
+
self.past_key_values.key_cache = old_key_cache
|
| 813 |
+
self.past_key_values.value_cache = old_value_cache
|
| 814 |
+
if inputs_embeds.shape[1] > 1:
|
| 815 |
+
self.past_key_values.chunk_cache = {}
|
| 816 |
+
del past_key_values
|
| 817 |
+
del old_key_cache
|
| 818 |
+
del old_value_cache
|
| 819 |
+
gc.collect()
|
| 820 |
+
torch.cuda.empty_cache()
|
| 821 |
+
if cache_position is None:
|
| 822 |
+
past_seen_tokens = self.past_key_values.get_seq_length() if self.past_key_values is not None else 0
|
| 823 |
+
cache_position = torch.arange(
|
| 824 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 825 |
+
)
|
| 826 |
+
|
| 827 |
+
if position_ids is None:
|
| 828 |
+
position_ids = cache_position.unsqueeze(0)
|
| 829 |
+
|
| 830 |
+
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
|
| 831 |
+
# (retrieving the same value from `cache_position` later on would crash dynamo)
|
| 832 |
+
if last_cache_position is None:
|
| 833 |
+
last_cache_position = 0
|
| 834 |
+
if attention_mask is not None:
|
| 835 |
+
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
|
| 836 |
+
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
|
| 837 |
+
last_cache_position = (
|
| 838 |
+
attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item()
|
| 839 |
+
)
|
| 840 |
+
causal_mask = self._update_causal_mask(
|
| 841 |
+
attention_mask, inputs_embeds, cache_position, self.past_key_values, output_attentions
|
| 842 |
+
)
|
| 843 |
+
|
| 844 |
+
# embed positions
|
| 845 |
+
hidden_states = inputs_embeds
|
| 846 |
+
|
| 847 |
+
# create position embeddings to be shared across the decoder layers
|
| 848 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 849 |
+
|
| 850 |
+
# normalized
|
| 851 |
+
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
| 852 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
| 853 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
| 854 |
+
hidden_states = hidden_states * normalizer
|
| 855 |
+
|
| 856 |
+
# decoder layers
|
| 857 |
+
all_hidden_states = () if output_hidden_states else None
|
| 858 |
+
all_self_attns = () if output_attentions else None
|
| 859 |
+
|
| 860 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 861 |
+
if output_hidden_states:
|
| 862 |
+
all_hidden_states += (hidden_states,)
|
| 863 |
+
|
| 864 |
+
if self.gradient_checkpointing and self.training:
|
| 865 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 866 |
+
decoder_layer.__call__,
|
| 867 |
+
hidden_states,
|
| 868 |
+
position_embeddings,
|
| 869 |
+
causal_mask,
|
| 870 |
+
position_ids,
|
| 871 |
+
self.past_key_values,
|
| 872 |
+
output_attentions,
|
| 873 |
+
use_cache,
|
| 874 |
+
cache_position,
|
| 875 |
+
last_cache_position,
|
| 876 |
+
)
|
| 877 |
+
else:
|
| 878 |
+
layer_outputs = decoder_layer(
|
| 879 |
+
hidden_states,
|
| 880 |
+
position_embeddings=position_embeddings,
|
| 881 |
+
attention_mask=causal_mask,
|
| 882 |
+
position_ids=position_ids,
|
| 883 |
+
past_key_value=self.past_key_values,
|
| 884 |
+
output_attentions=output_attentions,
|
| 885 |
+
use_cache=use_cache,
|
| 886 |
+
cache_position=cache_position,
|
| 887 |
+
last_cache_position=last_cache_position,
|
| 888 |
+
**flash_attn_kwargs,
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
hidden_states = layer_outputs[0]
|
| 892 |
+
|
| 893 |
+
if output_attentions:
|
| 894 |
+
all_self_attns += (layer_outputs[1],)
|
| 895 |
+
|
| 896 |
+
hidden_states = self.norm(hidden_states)
|
| 897 |
+
|
| 898 |
+
if output_hidden_states:
|
| 899 |
+
all_hidden_states += (hidden_states,)
|
| 900 |
+
|
| 901 |
+
output = BaseModelOutputWithPast(
|
| 902 |
+
last_hidden_state=hidden_states,
|
| 903 |
+
past_key_values=self.past_key_values,
|
| 904 |
+
hidden_states=all_hidden_states,
|
| 905 |
+
attentions=all_self_attns,
|
| 906 |
+
)
|
| 907 |
+
return output if return_dict else output.to_tuple()
|
| 908 |
+
|
| 909 |
+
@torch.no_grad()
|
| 910 |
+
def _update_causal_mask(
|
| 911 |
+
self,
|
| 912 |
+
attention_mask: torch.Tensor,
|
| 913 |
+
input_tensor: torch.Tensor,
|
| 914 |
+
cache_position: torch.Tensor,
|
| 915 |
+
past_key_values: HybridCache,
|
| 916 |
+
output_attentions: bool,
|
| 917 |
+
):
|
| 918 |
+
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
|
| 919 |
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
| 920 |
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
| 921 |
+
# as it doesn't cause dynamic control issues.
|
| 922 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 923 |
+
return attention_mask
|
| 924 |
+
|
| 925 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 926 |
+
sequence_length = input_tensor.shape[1]
|
| 927 |
+
if isinstance(past_key_values, (HybridCache, StaticCache)):
|
| 928 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 929 |
+
else:
|
| 930 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
| 931 |
+
|
| 932 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 933 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 934 |
+
attention_mask,
|
| 935 |
+
sequence_length=sequence_length,
|
| 936 |
+
target_length=target_length,
|
| 937 |
+
dtype=dtype,
|
| 938 |
+
device=device,
|
| 939 |
+
cache_position=cache_position,
|
| 940 |
+
batch_size=input_tensor.shape[0],
|
| 941 |
+
)
|
| 942 |
+
return causal_mask
|
| 943 |
+
|
| 944 |
+
@staticmethod
|
| 945 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 946 |
+
attention_mask: torch.Tensor,
|
| 947 |
+
sequence_length: int,
|
| 948 |
+
target_length: int,
|
| 949 |
+
dtype: torch.dtype,
|
| 950 |
+
device: torch.device,
|
| 951 |
+
cache_position: torch.Tensor,
|
| 952 |
+
batch_size: int,
|
| 953 |
+
**kwargs,
|
| 954 |
+
):
|
| 955 |
+
"""
|
| 956 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 957 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 958 |
+
|
| 959 |
+
Args:
|
| 960 |
+
attention_mask (`torch.Tensor`):
|
| 961 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 962 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 963 |
+
sequence_length (`int`):
|
| 964 |
+
The sequence length being processed.
|
| 965 |
+
target_length (`int`):
|
| 966 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 967 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 968 |
+
dtype (`torch.dtype`):
|
| 969 |
+
The dtype to use for the 4D attention mask.
|
| 970 |
+
device (`torch.device`):
|
| 971 |
+
The device to place the 4D attention mask on.
|
| 972 |
+
cache_position (`torch.Tensor`):
|
| 973 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 974 |
+
batch_size (`torch.Tensor`):
|
| 975 |
+
Batch size.
|
| 976 |
+
"""
|
| 977 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 978 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 979 |
+
causal_mask = attention_mask
|
| 980 |
+
else:
|
| 981 |
+
min_dtype = torch.finfo(dtype).min
|
| 982 |
+
causal_mask = torch.full(
|
| 983 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 984 |
+
)
|
| 985 |
+
if sequence_length != 1:
|
| 986 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 987 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 988 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 989 |
+
if attention_mask is not None:
|
| 990 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 991 |
+
mask_length = attention_mask.shape[-1]
|
| 992 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 993 |
+
causal_mask.device
|
| 994 |
+
)
|
| 995 |
+
padding_mask = padding_mask == 0
|
| 996 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 997 |
+
padding_mask, min_dtype
|
| 998 |
+
)
|
| 999 |
+
|
| 1000 |
+
return causal_mask
|
| 1001 |
+
|
| 1002 |
+
|
| 1003 |
+
class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin):
|
| 1004 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1005 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 1006 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 1007 |
+
|
| 1008 |
+
def __init__(self, config):
|
| 1009 |
+
super().__init__(config)
|
| 1010 |
+
self.model = Gemma2Model(config)
|
| 1011 |
+
self.vocab_size = config.vocab_size
|
| 1012 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1013 |
+
|
| 1014 |
+
# Initialize weights and apply final processing
|
| 1015 |
+
self.post_init()
|
| 1016 |
+
|
| 1017 |
+
def get_input_embeddings(self):
|
| 1018 |
+
return self.model.embed_tokens
|
| 1019 |
+
|
| 1020 |
+
def set_input_embeddings(self, value):
|
| 1021 |
+
self.model.embed_tokens = value
|
| 1022 |
+
|
| 1023 |
+
def get_output_embeddings(self):
|
| 1024 |
+
return self.lm_head
|
| 1025 |
+
|
| 1026 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1027 |
+
self.lm_head = new_embeddings
|
| 1028 |
+
|
| 1029 |
+
def set_decoder(self, decoder):
|
| 1030 |
+
self.model = decoder
|
| 1031 |
+
|
| 1032 |
+
def get_decoder(self):
|
| 1033 |
+
return self.model
|
| 1034 |
+
|
| 1035 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 1036 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
| 1037 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1038 |
+
def forward(
|
| 1039 |
+
self,
|
| 1040 |
+
input_ids: torch.LongTensor = None,
|
| 1041 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1042 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1043 |
+
past_key_values: Optional[HybridCache] = None,
|
| 1044 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1045 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1046 |
+
use_cache: Optional[bool] = None,
|
| 1047 |
+
output_attentions: Optional[bool] = None,
|
| 1048 |
+
output_hidden_states: Optional[bool] = None,
|
| 1049 |
+
return_dict: Optional[bool] = None,
|
| 1050 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1051 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1052 |
+
**loss_kwargs,
|
| 1053 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1054 |
+
r"""
|
| 1055 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1056 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1057 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1058 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1059 |
+
|
| 1060 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
| 1061 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1062 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1063 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1064 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
| 1065 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
| 1066 |
+
|
| 1067 |
+
Returns:
|
| 1068 |
+
|
| 1069 |
+
Example:
|
| 1070 |
+
|
| 1071 |
+
```python
|
| 1072 |
+
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
|
| 1073 |
+
|
| 1074 |
+
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
|
| 1075 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
| 1076 |
+
|
| 1077 |
+
>>> prompt = "What is your favorite condiment?"
|
| 1078 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1079 |
+
|
| 1080 |
+
>>> # Generate
|
| 1081 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1082 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1083 |
+
"What is your favorite condiment?"
|
| 1084 |
+
```"""
|
| 1085 |
+
|
| 1086 |
+
if self.training and self.config._attn_implementation != "eager":
|
| 1087 |
+
logger.warning_once(
|
| 1088 |
+
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
| 1089 |
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
| 1090 |
+
)
|
| 1091 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1092 |
+
output_hidden_states = (
|
| 1093 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1094 |
+
)
|
| 1095 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1096 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1097 |
+
|
| 1098 |
+
outputs = self.model(
|
| 1099 |
+
input_ids=input_ids,
|
| 1100 |
+
attention_mask=attention_mask,
|
| 1101 |
+
position_ids=position_ids,
|
| 1102 |
+
past_key_values=past_key_values,
|
| 1103 |
+
inputs_embeds=inputs_embeds,
|
| 1104 |
+
use_cache=use_cache,
|
| 1105 |
+
output_attentions=output_attentions,
|
| 1106 |
+
output_hidden_states=output_hidden_states,
|
| 1107 |
+
return_dict=return_dict,
|
| 1108 |
+
cache_position=cache_position,
|
| 1109 |
+
**loss_kwargs,
|
| 1110 |
+
)
|
| 1111 |
+
|
| 1112 |
+
hidden_states = outputs[0]
|
| 1113 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1114 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1115 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1116 |
+
if self.config.final_logit_softcapping is not None:
|
| 1117 |
+
logits = logits / self.config.final_logit_softcapping
|
| 1118 |
+
logits = torch.tanh(logits)
|
| 1119 |
+
logits = logits * self.config.final_logit_softcapping
|
| 1120 |
+
|
| 1121 |
+
loss = None
|
| 1122 |
+
if labels is not None:
|
| 1123 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
| 1124 |
+
|
| 1125 |
+
if not return_dict:
|
| 1126 |
+
output = (logits,) + outputs[1:]
|
| 1127 |
+
return (loss,) + output if loss is not None else output
|
| 1128 |
+
|
| 1129 |
+
return CausalLMOutputWithPast(
|
| 1130 |
+
loss=loss,
|
| 1131 |
+
logits=logits,
|
| 1132 |
+
past_key_values=outputs.past_key_values,
|
| 1133 |
+
hidden_states=outputs.hidden_states,
|
| 1134 |
+
attentions=outputs.attentions,
|
| 1135 |
+
)
|
| 1136 |
+
|
| 1137 |
+
def prepare_inputs_for_generation(
|
| 1138 |
+
self,
|
| 1139 |
+
input_ids,
|
| 1140 |
+
past_key_values=None,
|
| 1141 |
+
attention_mask=None,
|
| 1142 |
+
inputs_embeds=None,
|
| 1143 |
+
cache_position=None,
|
| 1144 |
+
position_ids=None,
|
| 1145 |
+
use_cache=True,
|
| 1146 |
+
logits_to_keep=None,
|
| 1147 |
+
**kwargs,
|
| 1148 |
+
):
|
| 1149 |
+
# Overwritten: has a special cache type, `HybridCache`
|
| 1150 |
+
|
| 1151 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 1152 |
+
input_ids,
|
| 1153 |
+
past_key_values=past_key_values,
|
| 1154 |
+
attention_mask=attention_mask,
|
| 1155 |
+
inputs_embeds=inputs_embeds,
|
| 1156 |
+
cache_position=cache_position,
|
| 1157 |
+
position_ids=position_ids,
|
| 1158 |
+
use_cache=use_cache,
|
| 1159 |
+
logits_to_keep=logits_to_keep,
|
| 1160 |
+
**kwargs,
|
| 1161 |
+
)
|
| 1162 |
+
|
| 1163 |
+
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
|
| 1164 |
+
# (retrieving the same value from `cache_position` later on would crash dynamo)
|
| 1165 |
+
model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0
|
| 1166 |
+
if logits_to_keep is None:
|
| 1167 |
+
_ = model_inputs.pop("logits_to_keep", None)
|
| 1168 |
+
|
| 1169 |
+
if (
|
| 1170 |
+
isinstance(past_key_values, HybridCache)
|
| 1171 |
+
and attention_mask.ndim == 2
|
| 1172 |
+
and not self.config._attn_implementation == "flash_attention_2"
|
| 1173 |
+
):
|
| 1174 |
+
if model_inputs["inputs_embeds"] is not None:
|
| 1175 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
| 1176 |
+
device = model_inputs["inputs_embeds"].device
|
| 1177 |
+
else:
|
| 1178 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
| 1179 |
+
device = model_inputs["input_ids"].device
|
| 1180 |
+
|
| 1181 |
+
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1182 |
+
attention_mask,
|
| 1183 |
+
sequence_length=sequence_length,
|
| 1184 |
+
target_length=past_key_values.get_max_cache_shape(),
|
| 1185 |
+
dtype=self.lm_head.weight.dtype,
|
| 1186 |
+
device=device,
|
| 1187 |
+
cache_position=cache_position,
|
| 1188 |
+
batch_size=batch_size,
|
| 1189 |
+
)
|
| 1190 |
+
model_inputs["attention_mask"] = attention_mask
|
| 1191 |
+
|
| 1192 |
+
return model_inputs
|
| 1193 |
+
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
__all__ = [
|
| 1197 |
+
"Gemma2ForCausalLM",
|
| 1198 |
+
]
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<start_of_turn>",
|
| 4 |
+
"<end_of_turn>"
|
| 5 |
+
],
|
| 6 |
+
"bos_token": {
|
| 7 |
+
"content": "<bos>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "<pad>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
|
| 3 |
+
size 17518525
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
| 3 |
+
size 4241003
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,1757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<bos>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<2mass>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "[@BOS@]",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<unused0>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "<unused1>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<unused2>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<unused3>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<unused4>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<unused5>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<unused6>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"14": {
|
| 118 |
+
"content": "<unused7>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"15": {
|
| 126 |
+
"content": "<unused8>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"16": {
|
| 134 |
+
"content": "<unused9>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"17": {
|
| 142 |
+
"content": "<unused10>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"18": {
|
| 150 |
+
"content": "<unused11>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"19": {
|
| 158 |
+
"content": "<unused12>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"20": {
|
| 166 |
+
"content": "<unused13>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"21": {
|
| 174 |
+
"content": "<unused14>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"22": {
|
| 182 |
+
"content": "<unused15>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"23": {
|
| 190 |
+
"content": "<unused16>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"24": {
|
| 198 |
+
"content": "<unused17>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"25": {
|
| 206 |
+
"content": "<unused18>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"26": {
|
| 214 |
+
"content": "<unused19>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"27": {
|
| 222 |
+
"content": "<unused20>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"28": {
|
| 230 |
+
"content": "<unused21>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"29": {
|
| 238 |
+
"content": "<unused22>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"30": {
|
| 246 |
+
"content": "<unused23>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"31": {
|
| 254 |
+
"content": "<unused24>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"32": {
|
| 262 |
+
"content": "<unused25>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"33": {
|
| 270 |
+
"content": "<unused26>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"34": {
|
| 278 |
+
"content": "<unused27>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"35": {
|
| 286 |
+
"content": "<unused28>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"36": {
|
| 294 |
+
"content": "<unused29>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"37": {
|
| 302 |
+
"content": "<unused30>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"38": {
|
| 310 |
+
"content": "<unused31>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"39": {
|
| 318 |
+
"content": "<unused32>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"40": {
|
| 326 |
+
"content": "<unused33>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"41": {
|
| 334 |
+
"content": "<unused34>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"42": {
|
| 342 |
+
"content": "<unused35>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"43": {
|
| 350 |
+
"content": "<unused36>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"44": {
|
| 358 |
+
"content": "<unused37>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"45": {
|
| 366 |
+
"content": "<unused38>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"46": {
|
| 374 |
+
"content": "<unused39>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"47": {
|
| 382 |
+
"content": "<unused40>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"48": {
|
| 390 |
+
"content": "<unused41>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"49": {
|
| 398 |
+
"content": "<unused42>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50": {
|
| 406 |
+
"content": "<unused43>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"51": {
|
| 414 |
+
"content": "<unused44>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"52": {
|
| 422 |
+
"content": "<unused45>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"53": {
|
| 430 |
+
"content": "<unused46>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"54": {
|
| 438 |
+
"content": "<unused47>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"55": {
|
| 446 |
+
"content": "<unused48>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"56": {
|
| 454 |
+
"content": "<unused49>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"57": {
|
| 462 |
+
"content": "<unused50>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"58": {
|
| 470 |
+
"content": "<unused51>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"59": {
|
| 478 |
+
"content": "<unused52>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"60": {
|
| 486 |
+
"content": "<unused53>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"61": {
|
| 494 |
+
"content": "<unused54>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"62": {
|
| 502 |
+
"content": "<unused55>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"63": {
|
| 510 |
+
"content": "<unused56>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"64": {
|
| 518 |
+
"content": "<unused57>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"65": {
|
| 526 |
+
"content": "<unused58>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"66": {
|
| 534 |
+
"content": "<unused59>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"67": {
|
| 542 |
+
"content": "<unused60>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"68": {
|
| 550 |
+
"content": "<unused61>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"69": {
|
| 558 |
+
"content": "<unused62>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"70": {
|
| 566 |
+
"content": "<unused63>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"71": {
|
| 574 |
+
"content": "<unused64>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"72": {
|
| 582 |
+
"content": "<unused65>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"73": {
|
| 590 |
+
"content": "<unused66>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"74": {
|
| 598 |
+
"content": "<unused67>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"75": {
|
| 606 |
+
"content": "<unused68>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"76": {
|
| 614 |
+
"content": "<unused69>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"77": {
|
| 622 |
+
"content": "<unused70>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"78": {
|
| 630 |
+
"content": "<unused71>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"79": {
|
| 638 |
+
"content": "<unused72>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"80": {
|
| 646 |
+
"content": "<unused73>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"81": {
|
| 654 |
+
"content": "<unused74>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"82": {
|
| 662 |
+
"content": "<unused75>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"83": {
|
| 670 |
+
"content": "<unused76>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"84": {
|
| 678 |
+
"content": "<unused77>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"85": {
|
| 686 |
+
"content": "<unused78>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"86": {
|
| 694 |
+
"content": "<unused79>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"87": {
|
| 702 |
+
"content": "<unused80>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"88": {
|
| 710 |
+
"content": "<unused81>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"89": {
|
| 718 |
+
"content": "<unused82>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"90": {
|
| 726 |
+
"content": "<unused83>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"91": {
|
| 734 |
+
"content": "<unused84>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"92": {
|
| 742 |
+
"content": "<unused85>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"93": {
|
| 750 |
+
"content": "<unused86>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"94": {
|
| 758 |
+
"content": "<unused87>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"95": {
|
| 766 |
+
"content": "<unused88>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"96": {
|
| 774 |
+
"content": "<unused89>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"97": {
|
| 782 |
+
"content": "<unused90>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"98": {
|
| 790 |
+
"content": "<unused91>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"99": {
|
| 798 |
+
"content": "<unused92>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"100": {
|
| 806 |
+
"content": "<unused93>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"101": {
|
| 814 |
+
"content": "<unused94>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"102": {
|
| 822 |
+
"content": "<unused95>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"103": {
|
| 830 |
+
"content": "<unused96>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"104": {
|
| 838 |
+
"content": "<unused97>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"105": {
|
| 846 |
+
"content": "<unused98>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"106": {
|
| 854 |
+
"content": "<start_of_turn>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"107": {
|
| 862 |
+
"content": "<end_of_turn>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"108": {
|
| 870 |
+
"content": "\n",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"109": {
|
| 878 |
+
"content": "\n\n",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"110": {
|
| 886 |
+
"content": "\n\n\n",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"111": {
|
| 894 |
+
"content": "\n\n\n\n",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"112": {
|
| 902 |
+
"content": "\n\n\n\n\n",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"113": {
|
| 910 |
+
"content": "\n\n\n\n\n\n",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"114": {
|
| 918 |
+
"content": "\n\n\n\n\n\n\n",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"115": {
|
| 926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"116": {
|
| 934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"117": {
|
| 942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"118": {
|
| 950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"119": {
|
| 958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"120": {
|
| 966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"121": {
|
| 974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"122": {
|
| 982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"123": {
|
| 990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"124": {
|
| 998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"125": {
|
| 1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"126": {
|
| 1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"127": {
|
| 1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"128": {
|
| 1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"129": {
|
| 1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"130": {
|
| 1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"131": {
|
| 1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"132": {
|
| 1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"133": {
|
| 1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"134": {
|
| 1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"135": {
|
| 1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"136": {
|
| 1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"137": {
|
| 1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"138": {
|
| 1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"139": {
|
| 1118 |
+
"content": "▁▁",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"140": {
|
| 1126 |
+
"content": "▁▁▁",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"141": {
|
| 1134 |
+
"content": "▁▁▁▁",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"142": {
|
| 1142 |
+
"content": "▁▁▁▁▁",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"143": {
|
| 1150 |
+
"content": "▁▁▁▁▁▁",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"144": {
|
| 1158 |
+
"content": "▁▁▁▁▁▁▁",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"145": {
|
| 1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"146": {
|
| 1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"147": {
|
| 1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"148": {
|
| 1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"149": {
|
| 1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"150": {
|
| 1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151": {
|
| 1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"152": {
|
| 1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": false
|
| 1228 |
+
},
|
| 1229 |
+
"153": {
|
| 1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": false
|
| 1236 |
+
},
|
| 1237 |
+
"154": {
|
| 1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": false
|
| 1244 |
+
},
|
| 1245 |
+
"155": {
|
| 1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": false
|
| 1252 |
+
},
|
| 1253 |
+
"156": {
|
| 1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": false
|
| 1260 |
+
},
|
| 1261 |
+
"157": {
|
| 1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": false
|
| 1268 |
+
},
|
| 1269 |
+
"158": {
|
| 1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": false
|
| 1276 |
+
},
|
| 1277 |
+
"159": {
|
| 1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": false
|
| 1284 |
+
},
|
| 1285 |
+
"160": {
|
| 1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": false
|
| 1292 |
+
},
|
| 1293 |
+
"161": {
|
| 1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": false
|
| 1300 |
+
},
|
| 1301 |
+
"162": {
|
| 1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": false
|
| 1308 |
+
},
|
| 1309 |
+
"163": {
|
| 1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": false
|
| 1316 |
+
},
|
| 1317 |
+
"164": {
|
| 1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": false
|
| 1324 |
+
},
|
| 1325 |
+
"165": {
|
| 1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": false
|
| 1332 |
+
},
|
| 1333 |
+
"166": {
|
| 1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": false
|
| 1340 |
+
},
|
| 1341 |
+
"167": {
|
| 1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": false
|
| 1348 |
+
},
|
| 1349 |
+
"168": {
|
| 1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": false
|
| 1356 |
+
},
|
| 1357 |
+
"169": {
|
| 1358 |
+
"content": "<table>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": false
|
| 1364 |
+
},
|
| 1365 |
+
"170": {
|
| 1366 |
+
"content": "<caption>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": false
|
| 1372 |
+
},
|
| 1373 |
+
"171": {
|
| 1374 |
+
"content": "<thead>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": false
|
| 1380 |
+
},
|
| 1381 |
+
"172": {
|
| 1382 |
+
"content": "<tbody>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": false
|
| 1388 |
+
},
|
| 1389 |
+
"173": {
|
| 1390 |
+
"content": "<tfoot>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": false
|
| 1396 |
+
},
|
| 1397 |
+
"174": {
|
| 1398 |
+
"content": "<tr>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": false
|
| 1404 |
+
},
|
| 1405 |
+
"175": {
|
| 1406 |
+
"content": "<th>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": false
|
| 1412 |
+
},
|
| 1413 |
+
"176": {
|
| 1414 |
+
"content": "<td>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": false
|
| 1420 |
+
},
|
| 1421 |
+
"177": {
|
| 1422 |
+
"content": "</table>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": false
|
| 1428 |
+
},
|
| 1429 |
+
"178": {
|
| 1430 |
+
"content": "</caption>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": false
|
| 1436 |
+
},
|
| 1437 |
+
"179": {
|
| 1438 |
+
"content": "</thead>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": false
|
| 1444 |
+
},
|
| 1445 |
+
"180": {
|
| 1446 |
+
"content": "</tbody>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": false
|
| 1452 |
+
},
|
| 1453 |
+
"181": {
|
| 1454 |
+
"content": "</tfoot>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": false
|
| 1460 |
+
},
|
| 1461 |
+
"182": {
|
| 1462 |
+
"content": "</tr>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": false
|
| 1468 |
+
},
|
| 1469 |
+
"183": {
|
| 1470 |
+
"content": "</th>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": false
|
| 1476 |
+
},
|
| 1477 |
+
"184": {
|
| 1478 |
+
"content": "</td>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": false
|
| 1484 |
+
},
|
| 1485 |
+
"185": {
|
| 1486 |
+
"content": "<h1>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": false
|
| 1492 |
+
},
|
| 1493 |
+
"186": {
|
| 1494 |
+
"content": "<h2>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": false
|
| 1500 |
+
},
|
| 1501 |
+
"187": {
|
| 1502 |
+
"content": "<h3>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": false
|
| 1508 |
+
},
|
| 1509 |
+
"188": {
|
| 1510 |
+
"content": "<h4>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": false
|
| 1516 |
+
},
|
| 1517 |
+
"189": {
|
| 1518 |
+
"content": "<h5>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": false
|
| 1524 |
+
},
|
| 1525 |
+
"190": {
|
| 1526 |
+
"content": "<h6>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": false
|
| 1532 |
+
},
|
| 1533 |
+
"191": {
|
| 1534 |
+
"content": "<blockquote>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": false
|
| 1540 |
+
},
|
| 1541 |
+
"192": {
|
| 1542 |
+
"content": "</h1>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": false
|
| 1548 |
+
},
|
| 1549 |
+
"193": {
|
| 1550 |
+
"content": "</h2>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": false
|
| 1556 |
+
},
|
| 1557 |
+
"194": {
|
| 1558 |
+
"content": "</h3>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": false
|
| 1564 |
+
},
|
| 1565 |
+
"195": {
|
| 1566 |
+
"content": "</h4>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": false
|
| 1572 |
+
},
|
| 1573 |
+
"196": {
|
| 1574 |
+
"content": "</h5>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": false
|
| 1580 |
+
},
|
| 1581 |
+
"197": {
|
| 1582 |
+
"content": "</h6>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": false
|
| 1588 |
+
},
|
| 1589 |
+
"198": {
|
| 1590 |
+
"content": "</blockquote>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": false
|
| 1596 |
+
},
|
| 1597 |
+
"199": {
|
| 1598 |
+
"content": "<strong>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": false
|
| 1604 |
+
},
|
| 1605 |
+
"200": {
|
| 1606 |
+
"content": "<em>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": false
|
| 1612 |
+
},
|
| 1613 |
+
"201": {
|
| 1614 |
+
"content": "<b>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": false
|
| 1620 |
+
},
|
| 1621 |
+
"202": {
|
| 1622 |
+
"content": "<i>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": false
|
| 1628 |
+
},
|
| 1629 |
+
"203": {
|
| 1630 |
+
"content": "<u>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": false
|
| 1636 |
+
},
|
| 1637 |
+
"204": {
|
| 1638 |
+
"content": "<s>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": false
|
| 1644 |
+
},
|
| 1645 |
+
"205": {
|
| 1646 |
+
"content": "<sub>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": false
|
| 1652 |
+
},
|
| 1653 |
+
"206": {
|
| 1654 |
+
"content": "<sup>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": false
|
| 1660 |
+
},
|
| 1661 |
+
"207": {
|
| 1662 |
+
"content": "<code>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": false
|
| 1668 |
+
},
|
| 1669 |
+
"208": {
|
| 1670 |
+
"content": "</strong>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": false
|
| 1676 |
+
},
|
| 1677 |
+
"209": {
|
| 1678 |
+
"content": "</em>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": false
|
| 1684 |
+
},
|
| 1685 |
+
"210": {
|
| 1686 |
+
"content": "</b>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": false
|
| 1692 |
+
},
|
| 1693 |
+
"211": {
|
| 1694 |
+
"content": "</i>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": false
|
| 1700 |
+
},
|
| 1701 |
+
"212": {
|
| 1702 |
+
"content": "</u>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": false
|
| 1708 |
+
},
|
| 1709 |
+
"213": {
|
| 1710 |
+
"content": "</s>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": false
|
| 1716 |
+
},
|
| 1717 |
+
"214": {
|
| 1718 |
+
"content": "</sub>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": false
|
| 1724 |
+
},
|
| 1725 |
+
"215": {
|
| 1726 |
+
"content": "</sup>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": false
|
| 1732 |
+
},
|
| 1733 |
+
"216": {
|
| 1734 |
+
"content": "</code>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": false
|
| 1740 |
+
}
|
| 1741 |
+
},
|
| 1742 |
+
"additional_special_tokens": [
|
| 1743 |
+
"<start_of_turn>",
|
| 1744 |
+
"<end_of_turn>"
|
| 1745 |
+
],
|
| 1746 |
+
"bos_token": "<bos>",
|
| 1747 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
| 1748 |
+
"clean_up_tokenization_spaces": false,
|
| 1749 |
+
"eos_token": "<end_of_turn>",
|
| 1750 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 1751 |
+
"pad_token": "<pad>",
|
| 1752 |
+
"sp_model_kwargs": {},
|
| 1753 |
+
"spaces_between_special_tokens": false,
|
| 1754 |
+
"tokenizer_class": "GemmaTokenizer",
|
| 1755 |
+
"unk_token": "<unk>",
|
| 1756 |
+
"use_default_system_prompt": false
|
| 1757 |
+
}
|