Training in progress, epoch 1
Browse files- chat_template.jinja +4 -0
- cl100k_base.tiktoken +0 -0
- config.json +143 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +427 -0
- special_tokens_map.json +5 -0
- tokenization_phi3_small.py +338 -0
- tokenizer_config.json +19 -0
- training_args.bin +3 -0
chat_template.jinja
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '
|
| 2 |
+
' + message['content'] + '<|end|>
|
| 3 |
+
' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>
|
| 4 |
+
' }}{% else %}{{ eos_token }}{% endif %}
|
cl100k_base.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
config.json
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Phi3SmallForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout_prob": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_phi3_small.Phi3SmallConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_phi3_small.Phi3SmallForCausalLM",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_phi3_small.Phi3SmallForSequenceClassification",
|
| 11 |
+
"AutoTokenizer": "tokenization_phi3_small.Phi3SmallTokenizer"
|
| 12 |
+
},
|
| 13 |
+
"blocksparse_block_size": 64,
|
| 14 |
+
"blocksparse_homo_head_pattern": false,
|
| 15 |
+
"blocksparse_num_local_blocks": 16,
|
| 16 |
+
"blocksparse_triton_kernel_block_size": 64,
|
| 17 |
+
"blocksparse_vert_stride": 8,
|
| 18 |
+
"bos_token_id": 100257,
|
| 19 |
+
"dense_attention_every_n_layers": 2,
|
| 20 |
+
"dummy_token_indices": [
|
| 21 |
+
100256,
|
| 22 |
+
100258,
|
| 23 |
+
100259,
|
| 24 |
+
100260,
|
| 25 |
+
100264,
|
| 26 |
+
100265,
|
| 27 |
+
100267,
|
| 28 |
+
100268,
|
| 29 |
+
100269,
|
| 30 |
+
100270,
|
| 31 |
+
100271,
|
| 32 |
+
100272,
|
| 33 |
+
100273,
|
| 34 |
+
100274,
|
| 35 |
+
100275,
|
| 36 |
+
100276,
|
| 37 |
+
100277,
|
| 38 |
+
100278,
|
| 39 |
+
100279,
|
| 40 |
+
100280,
|
| 41 |
+
100281,
|
| 42 |
+
100282,
|
| 43 |
+
100283,
|
| 44 |
+
100284,
|
| 45 |
+
100285,
|
| 46 |
+
100286,
|
| 47 |
+
100287,
|
| 48 |
+
100288,
|
| 49 |
+
100289,
|
| 50 |
+
100290,
|
| 51 |
+
100291,
|
| 52 |
+
100292,
|
| 53 |
+
100293,
|
| 54 |
+
100294,
|
| 55 |
+
100295,
|
| 56 |
+
100296,
|
| 57 |
+
100297,
|
| 58 |
+
100298,
|
| 59 |
+
100299,
|
| 60 |
+
100300,
|
| 61 |
+
100301,
|
| 62 |
+
100302,
|
| 63 |
+
100303,
|
| 64 |
+
100304,
|
| 65 |
+
100305,
|
| 66 |
+
100306,
|
| 67 |
+
100307,
|
| 68 |
+
100308,
|
| 69 |
+
100309,
|
| 70 |
+
100310,
|
| 71 |
+
100311,
|
| 72 |
+
100312,
|
| 73 |
+
100313,
|
| 74 |
+
100314,
|
| 75 |
+
100315,
|
| 76 |
+
100316,
|
| 77 |
+
100317,
|
| 78 |
+
100318,
|
| 79 |
+
100319,
|
| 80 |
+
100320,
|
| 81 |
+
100321,
|
| 82 |
+
100322,
|
| 83 |
+
100323,
|
| 84 |
+
100324,
|
| 85 |
+
100325,
|
| 86 |
+
100326,
|
| 87 |
+
100327,
|
| 88 |
+
100328,
|
| 89 |
+
100329,
|
| 90 |
+
100330,
|
| 91 |
+
100331,
|
| 92 |
+
100332,
|
| 93 |
+
100333,
|
| 94 |
+
100334,
|
| 95 |
+
100335,
|
| 96 |
+
100336,
|
| 97 |
+
100337,
|
| 98 |
+
100338,
|
| 99 |
+
100339,
|
| 100 |
+
100340,
|
| 101 |
+
100341,
|
| 102 |
+
100342,
|
| 103 |
+
100343,
|
| 104 |
+
100344,
|
| 105 |
+
100345,
|
| 106 |
+
100346,
|
| 107 |
+
100347,
|
| 108 |
+
100348,
|
| 109 |
+
100349,
|
| 110 |
+
100350,
|
| 111 |
+
100351
|
| 112 |
+
],
|
| 113 |
+
"embedding_dropout_prob": 0.1,
|
| 114 |
+
"eos_token_id": 100257,
|
| 115 |
+
"ff_dim_multiplier": null,
|
| 116 |
+
"ff_intermediate_size": 14336,
|
| 117 |
+
"ffn_dropout_prob": 0.1,
|
| 118 |
+
"gegelu_limit": 20.0,
|
| 119 |
+
"gegelu_pad_to_256": true,
|
| 120 |
+
"hidden_act": "gegelu",
|
| 121 |
+
"hidden_size": 4096,
|
| 122 |
+
"initializer_range": 0.02,
|
| 123 |
+
"layer_norm_epsilon": 1e-05,
|
| 124 |
+
"max_position_embeddings": 8192,
|
| 125 |
+
"model_type": "phi3small",
|
| 126 |
+
"mup_attn_multiplier": 1.0,
|
| 127 |
+
"mup_embedding_multiplier": 10.0,
|
| 128 |
+
"mup_use_scaling": true,
|
| 129 |
+
"mup_width_multiplier": 8.0,
|
| 130 |
+
"num_attention_heads": 32,
|
| 131 |
+
"num_hidden_layers": 32,
|
| 132 |
+
"num_key_value_heads": 8,
|
| 133 |
+
"pad_sequence_to_multiple_of_64": true,
|
| 134 |
+
"pad_token_id": 100257,
|
| 135 |
+
"reorder_and_upcast_attn": false,
|
| 136 |
+
"rope_embedding_base": 1000000,
|
| 137 |
+
"rope_position_scale": 1.0,
|
| 138 |
+
"rope_scaling": null,
|
| 139 |
+
"torch_dtype": "bfloat16",
|
| 140 |
+
"transformers_version": "4.55.0",
|
| 141 |
+
"use_cache": true,
|
| 142 |
+
"vocab_size": 100352
|
| 143 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ce0e92488c26f51c73f8b834630aad17cc7ee43ea1b20110366a43afb66554d
|
| 3 |
+
size 4832944248
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:854b1b634f813523a0ffd99234cdc948cd96843aff8c4b7e8ac6d989506ae2d2
|
| 3 |
+
size 4799609488
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7aecef4660fffd2dd0de236c479f311d6a8093092d0b44337aa6235093273e17
|
| 3 |
+
size 4799609504
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8e8d683a438b46cc25275619434acab732027a068e376424cf3b78002c2eda1
|
| 3 |
+
size 352437304
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 7392272384,
|
| 4 |
+
"total_size": 14784552960
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.final_layernorm.bias": "model-00004-of-00004.safetensors",
|
| 9 |
+
"model.final_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.10.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.10.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.10.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.11.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.11.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.11.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.11.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.12.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.12.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.12.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.12.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.13.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.13.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.13.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.13.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.14.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.14.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.14.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.14.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.14.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.15.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.15.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.15.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.15.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.15.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.16.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.16.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.16.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.16.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.16.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.16.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 129 |
+
"model.layers.17.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 130 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.17.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.17.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.17.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.17.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.17.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.18.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 141 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 142 |
+
"model.layers.18.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 143 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 144 |
+
"model.layers.18.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 145 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 146 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 147 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 148 |
+
"model.layers.18.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 149 |
+
"model.layers.18.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 150 |
+
"model.layers.18.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 151 |
+
"model.layers.18.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 152 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 153 |
+
"model.layers.19.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 154 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 155 |
+
"model.layers.19.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 156 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 157 |
+
"model.layers.19.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 158 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 159 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 160 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 161 |
+
"model.layers.19.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 162 |
+
"model.layers.19.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 163 |
+
"model.layers.19.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 164 |
+
"model.layers.19.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 165 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 166 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 167 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 168 |
+
"model.layers.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 169 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 170 |
+
"model.layers.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 171 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 172 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 173 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 174 |
+
"model.layers.2.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 175 |
+
"model.layers.2.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 176 |
+
"model.layers.2.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 177 |
+
"model.layers.2.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 178 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 179 |
+
"model.layers.20.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.20.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.20.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.20.self_attn.dense.bias": "model-00002-of-00004.safetensors",
|
| 188 |
+
"model.layers.20.self_attn.dense.weight": "model-00002-of-00004.safetensors",
|
| 189 |
+
"model.layers.20.self_attn.query_key_value.bias": "model-00002-of-00004.safetensors",
|
| 190 |
+
"model.layers.20.self_attn.query_key_value.weight": "model-00002-of-00004.safetensors",
|
| 191 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00004.safetensors",
|
| 192 |
+
"model.layers.21.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.21.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.21.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.21.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.21.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.21.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.21.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.22.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.22.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.22.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.22.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.22.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.22.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.22.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.23.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.23.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.23.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.23.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.23.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.23.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.23.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.24.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.24.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.24.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.24.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.24.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.24.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.24.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.25.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.25.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.25.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.25.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.25.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.25.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.25.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.26.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.26.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.layers.26.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 262 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 263 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 264 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 265 |
+
"model.layers.26.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 266 |
+
"model.layers.26.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 267 |
+
"model.layers.26.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 268 |
+
"model.layers.26.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 269 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 270 |
+
"model.layers.27.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 271 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 272 |
+
"model.layers.27.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 273 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 274 |
+
"model.layers.27.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 275 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 276 |
+
"model.layers.27.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 277 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 278 |
+
"model.layers.27.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 279 |
+
"model.layers.27.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 280 |
+
"model.layers.27.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 281 |
+
"model.layers.27.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 282 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 283 |
+
"model.layers.28.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 284 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 285 |
+
"model.layers.28.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 286 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 287 |
+
"model.layers.28.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 288 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 289 |
+
"model.layers.28.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 290 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 291 |
+
"model.layers.28.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 292 |
+
"model.layers.28.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 293 |
+
"model.layers.28.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 294 |
+
"model.layers.28.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 295 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 296 |
+
"model.layers.29.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 297 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 298 |
+
"model.layers.29.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 299 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 300 |
+
"model.layers.29.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 301 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 302 |
+
"model.layers.29.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 303 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 304 |
+
"model.layers.29.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 305 |
+
"model.layers.29.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 306 |
+
"model.layers.29.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 307 |
+
"model.layers.29.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 308 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 309 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.3.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.3.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.3.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.3.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 322 |
+
"model.layers.30.input_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 323 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 324 |
+
"model.layers.30.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 325 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 326 |
+
"model.layers.30.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 327 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 328 |
+
"model.layers.30.post_attention_layernorm.bias": "model-00003-of-00004.safetensors",
|
| 329 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 330 |
+
"model.layers.30.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 331 |
+
"model.layers.30.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 332 |
+
"model.layers.30.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 333 |
+
"model.layers.30.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 334 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 335 |
+
"model.layers.31.input_layernorm.bias": "model-00004-of-00004.safetensors",
|
| 336 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 337 |
+
"model.layers.31.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 338 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 339 |
+
"model.layers.31.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 340 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 341 |
+
"model.layers.31.post_attention_layernorm.bias": "model-00004-of-00004.safetensors",
|
| 342 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 343 |
+
"model.layers.31.self_attn.dense.bias": "model-00003-of-00004.safetensors",
|
| 344 |
+
"model.layers.31.self_attn.dense.weight": "model-00003-of-00004.safetensors",
|
| 345 |
+
"model.layers.31.self_attn.query_key_value.bias": "model-00003-of-00004.safetensors",
|
| 346 |
+
"model.layers.31.self_attn.query_key_value.weight": "model-00003-of-00004.safetensors",
|
| 347 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "model-00003-of-00004.safetensors",
|
| 348 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 349 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 350 |
+
"model.layers.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 351 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 352 |
+
"model.layers.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 353 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 354 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 355 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"model.layers.4.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 357 |
+
"model.layers.4.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 358 |
+
"model.layers.4.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 359 |
+
"model.layers.4.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 361 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"model.layers.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"model.layers.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 368 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"model.layers.5.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"model.layers.5.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"model.layers.5.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"model.layers.5.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 374 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 375 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 376 |
+
"model.layers.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 377 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 378 |
+
"model.layers.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 379 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 380 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 381 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 382 |
+
"model.layers.6.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 383 |
+
"model.layers.6.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 384 |
+
"model.layers.6.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 385 |
+
"model.layers.6.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 386 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 387 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"model.layers.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"model.layers.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"model.layers.7.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 396 |
+
"model.layers.7.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"model.layers.7.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"model.layers.7.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 400 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 401 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 402 |
+
"model.layers.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 403 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"model.layers.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 405 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 406 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 407 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 408 |
+
"model.layers.8.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 409 |
+
"model.layers.8.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 410 |
+
"model.layers.8.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 411 |
+
"model.layers.8.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 412 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors",
|
| 413 |
+
"model.layers.9.input_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 414 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 415 |
+
"model.layers.9.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 416 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 417 |
+
"model.layers.9.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 418 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 419 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00002-of-00004.safetensors",
|
| 420 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 421 |
+
"model.layers.9.self_attn.dense.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"model.layers.9.self_attn.dense.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"model.layers.9.self_attn.query_key_value.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"model.layers.9.self_attn.query_key_value.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "model-00001-of-00004.safetensors"
|
| 426 |
+
}
|
| 427 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|endoftext|>",
|
| 3 |
+
"eos_token": "<|endoftext|>",
|
| 4 |
+
"pad_token": "<|endoftext|>"
|
| 5 |
+
}
|
tokenization_phi3_small.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
|
| 2 |
+
import os
|
| 3 |
+
from typing import Collection, List, Optional, Dict, Set, Tuple, Union
|
| 4 |
+
|
| 5 |
+
from functools import cached_property
|
| 6 |
+
|
| 7 |
+
import base64
|
| 8 |
+
import requests
|
| 9 |
+
|
| 10 |
+
from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
|
| 11 |
+
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
| 12 |
+
import tiktoken
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
|
| 17 |
+
with a few additional special tokens to support the ChatML format.
|
| 18 |
+
|
| 19 |
+
TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
|
| 20 |
+
Maybe in the future, that would be useful? Can add that support later.
|
| 21 |
+
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 25 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 26 |
+
contents = f.read()
|
| 27 |
+
return {
|
| 28 |
+
base64.b64decode(token): int(rank)
|
| 29 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
|
| 33 |
+
# this in turn causes some indices to be empty. We account for these empty indices by adding
|
| 34 |
+
# dummy tokens to the tokenizer.
|
| 35 |
+
|
| 36 |
+
EFFECTIVE_PADDED_VOCAB_SIZE = 100352
|
| 37 |
+
ACTUAL_VOCAB_SIZE = 100276
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
DUMMY_TOKENS = {
|
| 41 |
+
f"<|dummy_id_{11 + offset}|>": 100276 + offset
|
| 42 |
+
for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
SPECIAL_TOKENS = {
|
| 46 |
+
# tiktoken.get_encoding("cl100k_base")._special_tokens
|
| 47 |
+
'<|endoftext|>': 100257,
|
| 48 |
+
'<|fim_prefix|>': 100258,
|
| 49 |
+
'<|fim_middle|>': 100259,
|
| 50 |
+
'<|fim_suffix|>': 100260,
|
| 51 |
+
# Special tokens for post-training
|
| 52 |
+
"<|system|>": 100261,
|
| 53 |
+
"<|user|>": 100262,
|
| 54 |
+
"<|assistant|>": 100263,
|
| 55 |
+
# Dummy unused tokens
|
| 56 |
+
"<|dummy_id_0|>": 100264,
|
| 57 |
+
"<|dummy_id_1|>": 100265,
|
| 58 |
+
# Special tokens for post-training continued
|
| 59 |
+
"<|end|>": 100266,
|
| 60 |
+
# Some dummy tokens, so that tokenization is contiguous and does not cause issues
|
| 61 |
+
# Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
|
| 62 |
+
# actually map to anything. So we use a dummy token here.
|
| 63 |
+
"<|dummy_id_2|>": 100256,
|
| 64 |
+
# Likewise, tokens from 100267 to 100275 are also unused
|
| 65 |
+
"<|dummy_id_3|>": 100267,
|
| 66 |
+
"<|dummy_id_4|>": 100268,
|
| 67 |
+
"<|dummy_id_5|>": 100269,
|
| 68 |
+
"<|dummy_id_6|>": 100270,
|
| 69 |
+
"<|dummy_id_7|>": 100271,
|
| 70 |
+
"<|dummy_id_8|>": 100272,
|
| 71 |
+
"<|dummy_id_9|>": 100273,
|
| 72 |
+
"<|dummy_id_10|>": 100274,
|
| 73 |
+
"<|dummy_id_11|>": 100275,
|
| 74 |
+
# The final end of prompt token
|
| 75 |
+
# (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
|
| 76 |
+
'<|endofprompt|>': 100276,
|
| 77 |
+
# Dummy tokens to account for padding of the tokenizer
|
| 78 |
+
# We pad to ensure tensor cores are used for vocab multiplication
|
| 79 |
+
**DUMMY_TOKENS
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
class Phi3SmallTokenizer(PreTrainedTokenizer):
|
| 83 |
+
vocab_files_names = {
|
| 84 |
+
"vocab_file": "cl100k_base.tiktoken"
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
model_input_names: List[str] = ["input_ids", "attention_mask"]
|
| 88 |
+
padding_side = "left"
|
| 89 |
+
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
vocab_file: Optional[str] = None,
|
| 93 |
+
errors: str = "replace",
|
| 94 |
+
**kwargs
|
| 95 |
+
) -> None:
|
| 96 |
+
# PreTrainedTokenizer's init calls _add_tokens, which in turn checks
|
| 97 |
+
# if the token is present in `self.special_tokens``. Hence instantiating it here.
|
| 98 |
+
# The way Qwen gets around this is by checking against SPECIAL_TOKENS
|
| 99 |
+
# But I think it's better to check against the objects own `special_tokens`
|
| 100 |
+
# in case we eventually want to allow the tokenizer to have special tokens.
|
| 101 |
+
self.special_tokens = SPECIAL_TOKENS
|
| 102 |
+
|
| 103 |
+
super().__init__(**kwargs)
|
| 104 |
+
self.errors = errors
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
base = tiktoken.get_encoding("cl100k_base")
|
| 108 |
+
# This deals with the scenario where user has restricted internet access
|
| 109 |
+
# and thus fails to download the tokenizer file from https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken
|
| 110 |
+
# It is assumed that user should be able to access files on huggingface hub.
|
| 111 |
+
except requests.RequestException:
|
| 112 |
+
import hashlib
|
| 113 |
+
from transformers.utils import cached_file
|
| 114 |
+
cached_tokenizer_path = cached_file(
|
| 115 |
+
"microsoft/Phi-3-small-8k-instruct",
|
| 116 |
+
"cl100k_base.tiktoken",
|
| 117 |
+
_raise_exceptions_for_gated_repo=False,
|
| 118 |
+
_raise_exceptions_for_missing_entries=False,
|
| 119 |
+
_raise_exceptions_for_connection_errors=False
|
| 120 |
+
)
|
| 121 |
+
tiktoken_cache_dir = os.path.dirname(cached_tokenizer_path)
|
| 122 |
+
tiktoken_cache_path = os.path.join(
|
| 123 |
+
tiktoken_cache_dir,
|
| 124 |
+
hashlib.sha1("https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken".encode()).hexdigest()
|
| 125 |
+
)
|
| 126 |
+
if not os.path.exists(tiktoken_cache_path):
|
| 127 |
+
os.rename(cached_tokenizer_path, tiktoken_cache_path)
|
| 128 |
+
os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
|
| 129 |
+
base = tiktoken.get_encoding("cl100k_base")
|
| 130 |
+
|
| 131 |
+
if vocab_file is None:
|
| 132 |
+
self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
|
| 133 |
+
else:
|
| 134 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
| 135 |
+
|
| 136 |
+
self.pat_str = base._pat_str
|
| 137 |
+
|
| 138 |
+
enc = tiktoken.Encoding(
|
| 139 |
+
name="phi3small",
|
| 140 |
+
pat_str=self.pat_str,
|
| 141 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 142 |
+
special_tokens=self.special_tokens,
|
| 143 |
+
)
|
| 144 |
+
self.tokenizer = enc
|
| 145 |
+
|
| 146 |
+
self.decoder: Dict[int, bytes] = {
|
| 147 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 148 |
+
}
|
| 149 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 150 |
+
|
| 151 |
+
self.eod_id = self.tokenizer.eot_token
|
| 152 |
+
self._eos_token = self._convert_id_to_token(self.eod_id)
|
| 153 |
+
|
| 154 |
+
# Setting the bos_token to be the same as the eos_token
|
| 155 |
+
# Note that this is **not** the correct thing to do, and is done
|
| 156 |
+
# just so that some of the downstream libraries do not break.
|
| 157 |
+
self._bos_token = self._eos_token
|
| 158 |
+
|
| 159 |
+
# Assign the special tokens to class variables
|
| 160 |
+
self.system_id = self.special_tokens["<|system|>"]
|
| 161 |
+
self.user_id = self.special_tokens["<|user|>"]
|
| 162 |
+
self.assistant_id = self.special_tokens["<|assistant|>"]
|
| 163 |
+
self.end_id = self.special_tokens["<|end|>"]
|
| 164 |
+
|
| 165 |
+
@cached_property
|
| 166 |
+
def dummy_token_indices(self) -> List[int]:
|
| 167 |
+
# There are some additional special tokens in the cl100k_base tokenizer
|
| 168 |
+
# that we do not use. Hence, we also consider them to be dummy tokens.
|
| 169 |
+
additional_tokens = [
|
| 170 |
+
"<|fim_prefix|>",
|
| 171 |
+
"<|fim_middle|>",
|
| 172 |
+
"<|fim_suffix|>",
|
| 173 |
+
"<|endofprompt|>"
|
| 174 |
+
]
|
| 175 |
+
dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
|
| 176 |
+
dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
|
| 177 |
+
return sorted(dummy_token_indices)
|
| 178 |
+
|
| 179 |
+
def __getstate__(self):
|
| 180 |
+
state = self.__dict__.copy()
|
| 181 |
+
del state["tokenizer"]
|
| 182 |
+
return state
|
| 183 |
+
|
| 184 |
+
def __setstate__(self, state):
|
| 185 |
+
self.__dict__ = state
|
| 186 |
+
enc = tiktoken.Encoding(
|
| 187 |
+
name="cl100k_im",
|
| 188 |
+
pat_str=self.pat_str,
|
| 189 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 190 |
+
special_tokens=self.special_tokens,
|
| 191 |
+
)
|
| 192 |
+
self.tokenizer = enc
|
| 193 |
+
|
| 194 |
+
def __len__(self):
|
| 195 |
+
return self.tokenizer.n_vocab
|
| 196 |
+
|
| 197 |
+
@classmethod
|
| 198 |
+
def from_pretrained(
|
| 199 |
+
cls,
|
| 200 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
| 201 |
+
*init_inputs,
|
| 202 |
+
**kwargs,
|
| 203 |
+
):
|
| 204 |
+
cls_kwargs = kwargs
|
| 205 |
+
# First try to load from the tokenization config if it exists
|
| 206 |
+
tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
| 207 |
+
if tokenization_config:
|
| 208 |
+
cls_kwargs = {
|
| 209 |
+
**tokenization_config,
|
| 210 |
+
**cls_kwargs
|
| 211 |
+
}
|
| 212 |
+
else:
|
| 213 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
| 214 |
+
cls_kwargs["model_max_length"] = config.max_position_embeddings
|
| 215 |
+
return cls(**cls_kwargs)
|
| 216 |
+
|
| 217 |
+
def get_vocab(self) -> Dict[Union[str, bytes], int]:
|
| 218 |
+
return {**self.mergeable_ranks, **self.special_tokens}
|
| 219 |
+
|
| 220 |
+
def convert_tokens_to_ids(
|
| 221 |
+
self,
|
| 222 |
+
tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 223 |
+
) -> Union[int, List[int]]:
|
| 224 |
+
ids = []
|
| 225 |
+
if isinstance(tokens, (str, bytes)):
|
| 226 |
+
if tokens in self.special_tokens:
|
| 227 |
+
return self.special_tokens[tokens]
|
| 228 |
+
else:
|
| 229 |
+
return self.mergeable_ranks.get(tokens)
|
| 230 |
+
ids: List[int] = []
|
| 231 |
+
for token in tokens:
|
| 232 |
+
ids.append(self.convert_tokens_to_ids(token))
|
| 233 |
+
return ids
|
| 234 |
+
|
| 235 |
+
def _add_tokens(
|
| 236 |
+
self,
|
| 237 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
| 238 |
+
special_tokens: bool = False,
|
| 239 |
+
) -> int:
|
| 240 |
+
if not special_tokens and new_tokens:
|
| 241 |
+
raise ValueError("Only special tokens can be added to this tokenizer")
|
| 242 |
+
for token in new_tokens:
|
| 243 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 244 |
+
if surface_form not in self.special_tokens:
|
| 245 |
+
raise ValueError(
|
| 246 |
+
"For now, we do not support unknown special tokens\n"
|
| 247 |
+
"In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
|
| 248 |
+
"starting from rank 100261 - 100263 and then 100266 - 100275.\n"
|
| 249 |
+
"And finally, we can re-construct the enc object back\n"
|
| 250 |
+
)
|
| 251 |
+
return 0
|
| 252 |
+
|
| 253 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 254 |
+
file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
|
| 255 |
+
with open(file_path, "w") as f:
|
| 256 |
+
for token, rank in self.mergeable_ranks.items():
|
| 257 |
+
line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
|
| 258 |
+
f.write(line)
|
| 259 |
+
return (file_path,)
|
| 260 |
+
|
| 261 |
+
def tokenize(
|
| 262 |
+
self,
|
| 263 |
+
text: str,
|
| 264 |
+
allowed_special: Union[Set, str] = "all",
|
| 265 |
+
disallowed_special: Union[Collection, str] = (),
|
| 266 |
+
**kwargs
|
| 267 |
+
) -> List[Union[bytes, str]]:
|
| 268 |
+
tokens: List[Union[bytes, str]] = []
|
| 269 |
+
for token_id in self.tokenizer.encode(
|
| 270 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 271 |
+
):
|
| 272 |
+
tokens.append(self.decoder[token_id])
|
| 273 |
+
return tokens
|
| 274 |
+
|
| 275 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 276 |
+
"""
|
| 277 |
+
Converts a sequence of tokens in a single string.
|
| 278 |
+
"""
|
| 279 |
+
text = ""
|
| 280 |
+
temp = b""
|
| 281 |
+
for t in tokens:
|
| 282 |
+
if isinstance(t, str):
|
| 283 |
+
if temp:
|
| 284 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 285 |
+
temp = b""
|
| 286 |
+
text += t
|
| 287 |
+
elif isinstance(t, bytes):
|
| 288 |
+
temp += t
|
| 289 |
+
else:
|
| 290 |
+
raise TypeError("token should only be of type types or str")
|
| 291 |
+
if temp:
|
| 292 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 293 |
+
return text
|
| 294 |
+
|
| 295 |
+
@property
|
| 296 |
+
def vocab_size(self):
|
| 297 |
+
return self.tokenizer.n_vocab
|
| 298 |
+
|
| 299 |
+
@property
|
| 300 |
+
def eos_token_id(self) -> int:
|
| 301 |
+
return self.eod_id
|
| 302 |
+
|
| 303 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 304 |
+
"""Converts an id to a token, special tokens included"""
|
| 305 |
+
if index in self.decoder:
|
| 306 |
+
return self.decoder[index]
|
| 307 |
+
raise ValueError("unknown ids")
|
| 308 |
+
|
| 309 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 310 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 311 |
+
if token in self.special_tokens:
|
| 312 |
+
return self.special_tokens[token]
|
| 313 |
+
if token in self.mergeable_ranks:
|
| 314 |
+
return self.mergeable_ranks[token]
|
| 315 |
+
raise ValueError("unknown token")
|
| 316 |
+
|
| 317 |
+
def _tokenize(self, text: str, **kwargs):
|
| 318 |
+
"""
|
| 319 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 320 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 321 |
+
Do NOT take care of added tokens.
|
| 322 |
+
"""
|
| 323 |
+
raise NotImplementedError
|
| 324 |
+
|
| 325 |
+
def _decode(
|
| 326 |
+
self,
|
| 327 |
+
token_ids: Union[int, List[int]],
|
| 328 |
+
skip_special_tokens: bool = False,
|
| 329 |
+
errors: str = None,
|
| 330 |
+
**kwargs,
|
| 331 |
+
) -> str:
|
| 332 |
+
if isinstance(token_ids, int):
|
| 333 |
+
token_ids = [token_ids]
|
| 334 |
+
if skip_special_tokens:
|
| 335 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 336 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
| 337 |
+
|
| 338 |
+
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": "1535ae26fb4faada95c6950e8bc6e867cdad6b00",
|
| 3 |
+
"_from_auto": true,
|
| 4 |
+
"added_tokens_decoder": {},
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoTokenizer": [
|
| 7 |
+
"tokenization_phi3_small.Phi3SmallTokenizer",
|
| 8 |
+
null
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
"bos_token": "<|endoftext|>",
|
| 12 |
+
"clean_up_tokenization_spaces": true,
|
| 13 |
+
"eos_token": "<|endoftext|>",
|
| 14 |
+
"extra_special_tokens": {},
|
| 15 |
+
"model_max_length": 8192,
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"tokenizer_class": "Phi3SmallTokenizer",
|
| 18 |
+
"trust_remote_code": true
|
| 19 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97ec7a03b6bc5a8d0661db4abd52ae7cc082e6e9051ac763e4371845127ab27b
|
| 3 |
+
size 5496
|