Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1053 -0
- config.json +32 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +8 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1053 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: setfit
|
| 3 |
+
tags:
|
| 4 |
+
- setfit
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- text-classification
|
| 7 |
+
- generated_from_setfit_trainer
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
- f1
|
| 11 |
+
- precision
|
| 12 |
+
- recall
|
| 13 |
+
widget:
|
| 14 |
+
- text: 'brand''s product, powered by product, is making waves by potentially surpassing
|
| 15 |
+
brand''s product in ai performance. lets not forget massive developments in ai
|
| 16 |
+
from brand, brand, brand and 5 new tools here''s what you need to know:'
|
| 17 |
+
- text: 'well... brand launches product tomorrow so it''s going to be much more exciting
|
| 18 |
+
than 2x! product ca: 0x09e5e172df245529b22686b77e959d3f2937feb0'
|
| 19 |
+
- text: 'brand''s product is product''s newest and greatest competitor yet: here''s
|
| 20 |
+
how you can use it within product dlvr.it/szs9nh'
|
| 21 |
+
- text: bad actors exploit product to write malicious codes product, ever since its
|
| 22 |
+
launch in november last year, has been making lots of noise. with creators experimenting
|
| 23 |
+
with it and getting varied results, the product became an acceptable product tool
|
| 24 |
+
that couldlnkd.in/drbvpbdt
|
| 25 |
+
- text: testing out product. i find it incredibly useful. one way to monetize it is
|
| 26 |
+
simply to put paid links related to the search
|
| 27 |
+
pipeline_tag: text-classification
|
| 28 |
+
inference: true
|
| 29 |
+
base_model: BAAI/bge-base-en-v1.5
|
| 30 |
+
model-index:
|
| 31 |
+
- name: SetFit with BAAI/bge-base-en-v1.5
|
| 32 |
+
results:
|
| 33 |
+
- task:
|
| 34 |
+
type: text-classification
|
| 35 |
+
name: Text Classification
|
| 36 |
+
dataset:
|
| 37 |
+
name: Unknown
|
| 38 |
+
type: unknown
|
| 39 |
+
split: test
|
| 40 |
+
metrics:
|
| 41 |
+
- type: accuracy
|
| 42 |
+
value: 0.86
|
| 43 |
+
name: Accuracy
|
| 44 |
+
- type: f1
|
| 45 |
+
value:
|
| 46 |
+
- 0.2857142857142857
|
| 47 |
+
- 0.5945945945945945
|
| 48 |
+
- 0.9195402298850575
|
| 49 |
+
name: F1
|
| 50 |
+
- type: precision
|
| 51 |
+
value:
|
| 52 |
+
- 1.0
|
| 53 |
+
- 0.9166666666666666
|
| 54 |
+
- 0.8547008547008547
|
| 55 |
+
name: Precision
|
| 56 |
+
- type: recall
|
| 57 |
+
value:
|
| 58 |
+
- 0.16666666666666666
|
| 59 |
+
- 0.44
|
| 60 |
+
- 0.9950248756218906
|
| 61 |
+
name: Recall
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
# SetFit with BAAI/bge-base-en-v1.5
|
| 65 |
+
|
| 66 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 67 |
+
|
| 68 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 69 |
+
|
| 70 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 71 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 72 |
+
|
| 73 |
+
## Model Details
|
| 74 |
+
|
| 75 |
+
### Model Description
|
| 76 |
+
- **Model Type:** SetFit
|
| 77 |
+
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
| 78 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 79 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 80 |
+
- **Number of Classes:** 3 classes
|
| 81 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 82 |
+
<!-- - **Language:** Unknown -->
|
| 83 |
+
<!-- - **License:** Unknown -->
|
| 84 |
+
|
| 85 |
+
### Model Sources
|
| 86 |
+
|
| 87 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 88 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 89 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 90 |
+
|
| 91 |
+
### Model Labels
|
| 92 |
+
| Label | Examples |
|
| 93 |
+
|:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 94 |
+
| neither | <ul><li>'ai becomes so much easier to spot when you realize it can replicate, but never understand. its why product usually gives its answers in lists. its a standardized format meant to hide its ignorance to prose.'</li><li>"hakeem jeffries' tweets are getting so productian it's not even funny and boring any more. he may have brand cranking these out."</li><li>'have you tried this with product? i did this with music and got amazing results'</li></ul> |
|
| 95 |
+
| peak | <ul><li>'thats rad man. i have adhd and dyslexia and some other cognitive disabilities and honestly brand is a lifesaver.'</li><li>"product is like having a coding partner that understands my style, enhancing my productivity significantly. i've even changed the way i code. my code and process is more modular so it's easier to use the output from product in my code base!"</li><li>'product is an incredible tool for explaining concepts in i prompted it to describe how k-means clustering could be applied to an engagement survey. it generated sample data, explained the concept and how the insights could be applied.'</li></ul> |
|
| 96 |
+
| pit | <ul><li>'many similar posts popping up on my timeline frustrated with chatproduct not performing to previous levels defeats the purpose of having an ai assitant available 24/7 if it never wants to do any of the tasks you ask of it'</li><li>"the stuff brand gives is entirely too scripted *and* impractical, which is what i'm trying to avoid:/"</li><li>'so disappointed theyve programmed product to think starvation mode is real'</li></ul> |
|
| 97 |
+
|
| 98 |
+
## Evaluation
|
| 99 |
+
|
| 100 |
+
### Metrics
|
| 101 |
+
| Label | Accuracy | F1 | Precision | Recall |
|
| 102 |
+
|:--------|:---------|:-------------------------------------------------------------|:----------------------------------------------|:------------------------------------------------|
|
| 103 |
+
| **all** | 0.86 | [0.2857142857142857, 0.5945945945945945, 0.9195402298850575] | [1.0, 0.9166666666666666, 0.8547008547008547] | [0.16666666666666666, 0.44, 0.9950248756218906] |
|
| 104 |
+
|
| 105 |
+
## Uses
|
| 106 |
+
|
| 107 |
+
### Direct Use for Inference
|
| 108 |
+
|
| 109 |
+
First install the SetFit library:
|
| 110 |
+
|
| 111 |
+
```bash
|
| 112 |
+
pip install setfit
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
Then you can load this model and run inference.
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
from setfit import SetFitModel
|
| 119 |
+
|
| 120 |
+
# Download from the 🤗 Hub
|
| 121 |
+
model = SetFitModel.from_pretrained("jamiehudson/725_model_v3")
|
| 122 |
+
# Run inference
|
| 123 |
+
preds = model("brand's product is product's newest and greatest competitor yet: here's how you can use it within product dlvr.it/szs9nh")
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
<!--
|
| 127 |
+
### Downstream Use
|
| 128 |
+
|
| 129 |
+
*List how someone could finetune this model on their own dataset.*
|
| 130 |
+
-->
|
| 131 |
+
|
| 132 |
+
<!--
|
| 133 |
+
### Out-of-Scope Use
|
| 134 |
+
|
| 135 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 136 |
+
-->
|
| 137 |
+
|
| 138 |
+
<!--
|
| 139 |
+
## Bias, Risks and Limitations
|
| 140 |
+
|
| 141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 142 |
+
-->
|
| 143 |
+
|
| 144 |
+
<!--
|
| 145 |
+
### Recommendations
|
| 146 |
+
|
| 147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 148 |
+
-->
|
| 149 |
+
|
| 150 |
+
## Training Details
|
| 151 |
+
|
| 152 |
+
### Training Set Metrics
|
| 153 |
+
| Training set | Min | Median | Max |
|
| 154 |
+
|:-------------|:----|:--------|:----|
|
| 155 |
+
| Word count | 3 | 27.8534 | 91 |
|
| 156 |
+
|
| 157 |
+
| Label | Training Sample Count |
|
| 158 |
+
|:--------|:----------------------|
|
| 159 |
+
| pit | 26 |
|
| 160 |
+
| peak | 51 |
|
| 161 |
+
| neither | 1137 |
|
| 162 |
+
|
| 163 |
+
### Training Hyperparameters
|
| 164 |
+
- batch_size: (32, 32)
|
| 165 |
+
- num_epochs: (1, 1)
|
| 166 |
+
- max_steps: -1
|
| 167 |
+
- sampling_strategy: oversampling
|
| 168 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 169 |
+
- head_learning_rate: 0.01
|
| 170 |
+
- loss: CosineSimilarityLoss
|
| 171 |
+
- distance_metric: cosine_distance
|
| 172 |
+
- margin: 0.25
|
| 173 |
+
- end_to_end: False
|
| 174 |
+
- use_amp: False
|
| 175 |
+
- warmup_proportion: 0.1
|
| 176 |
+
- seed: 42
|
| 177 |
+
- eval_max_steps: -1
|
| 178 |
+
- load_best_model_at_end: False
|
| 179 |
+
|
| 180 |
+
### Training Results
|
| 181 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 182 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
| 183 |
+
| 0.0012 | 1 | 0.2612 | - |
|
| 184 |
+
| 0.0621 | 50 | 0.2009 | - |
|
| 185 |
+
| 0.1242 | 100 | 0.0339 | - |
|
| 186 |
+
| 0.1863 | 150 | 0.0062 | - |
|
| 187 |
+
| 0.2484 | 200 | 0.0039 | - |
|
| 188 |
+
| 0.3106 | 250 | 0.0017 | - |
|
| 189 |
+
| 0.3727 | 300 | 0.003 | - |
|
| 190 |
+
| 0.4348 | 350 | 0.0015 | - |
|
| 191 |
+
| 0.4969 | 400 | 0.002 | - |
|
| 192 |
+
| 0.5590 | 450 | 0.0022 | - |
|
| 193 |
+
| 0.6211 | 500 | 0.0013 | - |
|
| 194 |
+
| 0.6832 | 550 | 0.0013 | - |
|
| 195 |
+
| 0.7453 | 600 | 0.0014 | - |
|
| 196 |
+
| 0.8075 | 650 | 0.0014 | - |
|
| 197 |
+
| 0.8696 | 700 | 0.0012 | - |
|
| 198 |
+
| 0.9317 | 750 | 0.0014 | - |
|
| 199 |
+
| 0.9938 | 800 | 0.0016 | - |
|
| 200 |
+
| 0.0000 | 1 | 0.0897 | - |
|
| 201 |
+
| 0.0012 | 50 | 0.1107 | - |
|
| 202 |
+
| 0.0025 | 100 | 0.065 | - |
|
| 203 |
+
| 0.0037 | 150 | 0.1892 | - |
|
| 204 |
+
| 0.0049 | 200 | 0.0774 | - |
|
| 205 |
+
| 0.0062 | 250 | 0.0391 | - |
|
| 206 |
+
| 0.0074 | 300 | 0.117 | - |
|
| 207 |
+
| 0.0086 | 350 | 0.0954 | - |
|
| 208 |
+
| 0.0099 | 400 | 0.0292 | - |
|
| 209 |
+
| 0.0111 | 450 | 0.0327 | - |
|
| 210 |
+
| 0.0123 | 500 | 0.0041 | - |
|
| 211 |
+
| 0.0136 | 550 | 0.0018 | - |
|
| 212 |
+
| 0.0148 | 600 | 0.03 | - |
|
| 213 |
+
| 0.0160 | 650 | 0.0015 | - |
|
| 214 |
+
| 0.0173 | 700 | 0.0036 | - |
|
| 215 |
+
| 0.0185 | 750 | 0.0182 | - |
|
| 216 |
+
| 0.0197 | 800 | 0.0017 | - |
|
| 217 |
+
| 0.0210 | 850 | 0.0012 | - |
|
| 218 |
+
| 0.0222 | 900 | 0.0014 | - |
|
| 219 |
+
| 0.0234 | 950 | 0.0011 | - |
|
| 220 |
+
| 0.0247 | 1000 | 0.0014 | - |
|
| 221 |
+
| 0.0259 | 1050 | 0.0301 | - |
|
| 222 |
+
| 0.0271 | 1100 | 0.001 | - |
|
| 223 |
+
| 0.0284 | 1150 | 0.0011 | - |
|
| 224 |
+
| 0.0296 | 1200 | 0.0009 | - |
|
| 225 |
+
| 0.0308 | 1250 | 0.0011 | - |
|
| 226 |
+
| 0.0321 | 1300 | 0.0012 | - |
|
| 227 |
+
| 0.0333 | 1350 | 0.001 | - |
|
| 228 |
+
| 0.0345 | 1400 | 0.0008 | - |
|
| 229 |
+
| 0.0358 | 1450 | 0.005 | - |
|
| 230 |
+
| 0.0370 | 1500 | 0.0008 | - |
|
| 231 |
+
| 0.0382 | 1550 | 0.0044 | - |
|
| 232 |
+
| 0.0395 | 1600 | 0.0008 | - |
|
| 233 |
+
| 0.0407 | 1650 | 0.0007 | - |
|
| 234 |
+
| 0.0419 | 1700 | 0.0014 | - |
|
| 235 |
+
| 0.0432 | 1750 | 0.0006 | - |
|
| 236 |
+
| 0.0444 | 1800 | 0.001 | - |
|
| 237 |
+
| 0.0456 | 1850 | 0.0007 | - |
|
| 238 |
+
| 0.0469 | 1900 | 0.0006 | - |
|
| 239 |
+
| 0.0481 | 1950 | 0.0006 | - |
|
| 240 |
+
| 0.0493 | 2000 | 0.0005 | - |
|
| 241 |
+
| 0.0506 | 2050 | 0.0006 | - |
|
| 242 |
+
| 0.0518 | 2100 | 0.0041 | - |
|
| 243 |
+
| 0.0530 | 2150 | 0.0006 | - |
|
| 244 |
+
| 0.0543 | 2200 | 0.0006 | - |
|
| 245 |
+
| 0.0555 | 2250 | 0.0007 | - |
|
| 246 |
+
| 0.0567 | 2300 | 0.0006 | - |
|
| 247 |
+
| 0.0580 | 2350 | 0.0005 | - |
|
| 248 |
+
| 0.0592 | 2400 | 0.0007 | - |
|
| 249 |
+
| 0.0604 | 2450 | 0.0005 | - |
|
| 250 |
+
| 0.0617 | 2500 | 0.0004 | - |
|
| 251 |
+
| 0.0629 | 2550 | 0.0005 | - |
|
| 252 |
+
| 0.0641 | 2600 | 0.0004 | - |
|
| 253 |
+
| 0.0654 | 2650 | 0.0007 | - |
|
| 254 |
+
| 0.0666 | 2700 | 0.0004 | - |
|
| 255 |
+
| 0.0678 | 2750 | 0.0005 | - |
|
| 256 |
+
| 0.0691 | 2800 | 0.0004 | - |
|
| 257 |
+
| 0.0703 | 2850 | 0.0004 | - |
|
| 258 |
+
| 0.0715 | 2900 | 0.0004 | - |
|
| 259 |
+
| 0.0728 | 2950 | 0.0005 | - |
|
| 260 |
+
| 0.0740 | 3000 | 0.0004 | - |
|
| 261 |
+
| 0.0752 | 3050 | 0.0004 | - |
|
| 262 |
+
| 0.0765 | 3100 | 0.0003 | - |
|
| 263 |
+
| 0.0777 | 3150 | 0.0003 | - |
|
| 264 |
+
| 0.0789 | 3200 | 0.0003 | - |
|
| 265 |
+
| 0.0802 | 3250 | 0.0003 | - |
|
| 266 |
+
| 0.0814 | 3300 | 0.0004 | - |
|
| 267 |
+
| 0.0826 | 3350 | 0.0003 | - |
|
| 268 |
+
| 0.0839 | 3400 | 0.0003 | - |
|
| 269 |
+
| 0.0851 | 3450 | 0.0007 | - |
|
| 270 |
+
| 0.0863 | 3500 | 0.0003 | - |
|
| 271 |
+
| 0.0876 | 3550 | 0.0003 | - |
|
| 272 |
+
| 0.0888 | 3600 | 0.0004 | - |
|
| 273 |
+
| 0.0900 | 3650 | 0.0003 | - |
|
| 274 |
+
| 0.0913 | 3700 | 0.0003 | - |
|
| 275 |
+
| 0.0925 | 3750 | 0.0004 | - |
|
| 276 |
+
| 0.0937 | 3800 | 0.0004 | - |
|
| 277 |
+
| 0.0950 | 3850 | 0.0232 | - |
|
| 278 |
+
| 0.0962 | 3900 | 0.0004 | - |
|
| 279 |
+
| 0.0974 | 3950 | 0.0165 | - |
|
| 280 |
+
| 0.0987 | 4000 | 0.0003 | - |
|
| 281 |
+
| 0.0999 | 4050 | 0.0229 | - |
|
| 282 |
+
| 0.1011 | 4100 | 0.0004 | - |
|
| 283 |
+
| 0.1024 | 4150 | 0.0003 | - |
|
| 284 |
+
| 0.1036 | 4200 | 0.0004 | - |
|
| 285 |
+
| 0.1048 | 4250 | 0.0002 | - |
|
| 286 |
+
| 0.1061 | 4300 | 0.0002 | - |
|
| 287 |
+
| 0.1073 | 4350 | 0.0002 | - |
|
| 288 |
+
| 0.1085 | 4400 | 0.0003 | - |
|
| 289 |
+
| 0.1098 | 4450 | 0.0002 | - |
|
| 290 |
+
| 0.1110 | 4500 | 0.0002 | - |
|
| 291 |
+
| 0.1122 | 4550 | 0.0003 | - |
|
| 292 |
+
| 0.1135 | 4600 | 0.0002 | - |
|
| 293 |
+
| 0.1147 | 4650 | 0.0002 | - |
|
| 294 |
+
| 0.1159 | 4700 | 0.0002 | - |
|
| 295 |
+
| 0.1172 | 4750 | 0.0002 | - |
|
| 296 |
+
| 0.1184 | 4800 | 0.0002 | - |
|
| 297 |
+
| 0.1196 | 4850 | 0.0002 | - |
|
| 298 |
+
| 0.1209 | 4900 | 0.0002 | - |
|
| 299 |
+
| 0.1221 | 4950 | 0.0002 | - |
|
| 300 |
+
| 0.1233 | 5000 | 0.0002 | - |
|
| 301 |
+
| 0.1246 | 5050 | 0.0002 | - |
|
| 302 |
+
| 0.1258 | 5100 | 0.0002 | - |
|
| 303 |
+
| 0.1270 | 5150 | 0.0003 | - |
|
| 304 |
+
| 0.1283 | 5200 | 0.0001 | - |
|
| 305 |
+
| 0.1295 | 5250 | 0.0002 | - |
|
| 306 |
+
| 0.1307 | 5300 | 0.0002 | - |
|
| 307 |
+
| 0.1320 | 5350 | 0.0002 | - |
|
| 308 |
+
| 0.1332 | 5400 | 0.0001 | - |
|
| 309 |
+
| 0.1344 | 5450 | 0.0002 | - |
|
| 310 |
+
| 0.1357 | 5500 | 0.0002 | - |
|
| 311 |
+
| 0.1369 | 5550 | 0.0002 | - |
|
| 312 |
+
| 0.1381 | 5600 | 0.0001 | - |
|
| 313 |
+
| 0.1394 | 5650 | 0.0001 | - |
|
| 314 |
+
| 0.1406 | 5700 | 0.0001 | - |
|
| 315 |
+
| 0.1418 | 5750 | 0.0001 | - |
|
| 316 |
+
| 0.1431 | 5800 | 0.0001 | - |
|
| 317 |
+
| 0.1443 | 5850 | 0.0001 | - |
|
| 318 |
+
| 0.1455 | 5900 | 0.0001 | - |
|
| 319 |
+
| 0.1468 | 5950 | 0.0002 | - |
|
| 320 |
+
| 0.1480 | 6000 | 0.0001 | - |
|
| 321 |
+
| 0.1492 | 6050 | 0.0002 | - |
|
| 322 |
+
| 0.1505 | 6100 | 0.0002 | - |
|
| 323 |
+
| 0.1517 | 6150 | 0.0004 | - |
|
| 324 |
+
| 0.1529 | 6200 | 0.0003 | - |
|
| 325 |
+
| 0.1542 | 6250 | 0.0001 | - |
|
| 326 |
+
| 0.1554 | 6300 | 0.0003 | - |
|
| 327 |
+
| 0.1566 | 6350 | 0.0001 | - |
|
| 328 |
+
| 0.1579 | 6400 | 0.0001 | - |
|
| 329 |
+
| 0.1591 | 6450 | 0.0002 | - |
|
| 330 |
+
| 0.1603 | 6500 | 0.0001 | - |
|
| 331 |
+
| 0.1616 | 6550 | 0.0001 | - |
|
| 332 |
+
| 0.1628 | 6600 | 0.0001 | - |
|
| 333 |
+
| 0.1640 | 6650 | 0.0001 | - |
|
| 334 |
+
| 0.1653 | 6700 | 0.0002 | - |
|
| 335 |
+
| 0.1665 | 6750 | 0.0001 | - |
|
| 336 |
+
| 0.1677 | 6800 | 0.0001 | - |
|
| 337 |
+
| 0.1690 | 6850 | 0.0001 | - |
|
| 338 |
+
| 0.1702 | 6900 | 0.0001 | - |
|
| 339 |
+
| 0.1714 | 6950 | 0.0001 | - |
|
| 340 |
+
| 0.1727 | 7000 | 0.0001 | - |
|
| 341 |
+
| 0.1739 | 7050 | 0.0001 | - |
|
| 342 |
+
| 0.1751 | 7100 | 0.0001 | - |
|
| 343 |
+
| 0.1764 | 7150 | 0.0001 | - |
|
| 344 |
+
| 0.1776 | 7200 | 0.0001 | - |
|
| 345 |
+
| 0.1788 | 7250 | 0.0001 | - |
|
| 346 |
+
| 0.1801 | 7300 | 0.0001 | - |
|
| 347 |
+
| 0.1813 | 7350 | 0.0001 | - |
|
| 348 |
+
| 0.1825 | 7400 | 0.0001 | - |
|
| 349 |
+
| 0.1838 | 7450 | 0.0001 | - |
|
| 350 |
+
| 0.1850 | 7500 | 0.0001 | - |
|
| 351 |
+
| 0.1862 | 7550 | 0.0001 | - |
|
| 352 |
+
| 0.1875 | 7600 | 0.0 | - |
|
| 353 |
+
| 0.1887 | 7650 | 0.0001 | - |
|
| 354 |
+
| 0.1899 | 7700 | 0.0001 | - |
|
| 355 |
+
| 0.1912 | 7750 | 0.0001 | - |
|
| 356 |
+
| 0.1924 | 7800 | 0.0001 | - |
|
| 357 |
+
| 0.1936 | 7850 | 0.0 | - |
|
| 358 |
+
| 0.1949 | 7900 | 0.0001 | - |
|
| 359 |
+
| 0.1961 | 7950 | 0.0 | - |
|
| 360 |
+
| 0.1973 | 8000 | 0.0001 | - |
|
| 361 |
+
| 0.1986 | 8050 | 0.0 | - |
|
| 362 |
+
| 0.1998 | 8100 | 0.0 | - |
|
| 363 |
+
| 0.2010 | 8150 | 0.0 | - |
|
| 364 |
+
| 0.2023 | 8200 | 0.0 | - |
|
| 365 |
+
| 0.2035 | 8250 | 0.0 | - |
|
| 366 |
+
| 0.2047 | 8300 | 0.0 | - |
|
| 367 |
+
| 0.2060 | 8350 | 0.0 | - |
|
| 368 |
+
| 0.2072 | 8400 | 0.0001 | - |
|
| 369 |
+
| 0.2084 | 8450 | 0.0 | - |
|
| 370 |
+
| 0.2097 | 8500 | 0.0002 | - |
|
| 371 |
+
| 0.2109 | 8550 | 0.0 | - |
|
| 372 |
+
| 0.2121 | 8600 | 0.0 | - |
|
| 373 |
+
| 0.2134 | 8650 | 0.0 | - |
|
| 374 |
+
| 0.2146 | 8700 | 0.0 | - |
|
| 375 |
+
| 0.2158 | 8750 | 0.0001 | - |
|
| 376 |
+
| 0.2171 | 8800 | 0.0002 | - |
|
| 377 |
+
| 0.2183 | 8850 | 0.0 | - |
|
| 378 |
+
| 0.2195 | 8900 | 0.0001 | - |
|
| 379 |
+
| 0.2208 | 8950 | 0.0 | - |
|
| 380 |
+
| 0.2220 | 9000 | 0.0 | - |
|
| 381 |
+
| 0.2232 | 9050 | 0.0 | - |
|
| 382 |
+
| 0.2245 | 9100 | 0.0 | - |
|
| 383 |
+
| 0.2257 | 9150 | 0.0 | - |
|
| 384 |
+
| 0.2269 | 9200 | 0.0 | - |
|
| 385 |
+
| 0.2282 | 9250 | 0.0 | - |
|
| 386 |
+
| 0.2294 | 9300 | 0.0 | - |
|
| 387 |
+
| 0.2306 | 9350 | 0.0 | - |
|
| 388 |
+
| 0.2319 | 9400 | 0.0 | - |
|
| 389 |
+
| 0.2331 | 9450 | 0.0 | - |
|
| 390 |
+
| 0.2343 | 9500 | 0.0 | - |
|
| 391 |
+
| 0.2356 | 9550 | 0.0 | - |
|
| 392 |
+
| 0.2368 | 9600 | 0.0 | - |
|
| 393 |
+
| 0.2380 | 9650 | 0.0 | - |
|
| 394 |
+
| 0.2393 | 9700 | 0.0 | - |
|
| 395 |
+
| 0.2405 | 9750 | 0.0 | - |
|
| 396 |
+
| 0.2417 | 9800 | 0.0 | - |
|
| 397 |
+
| 0.2430 | 9850 | 0.0 | - |
|
| 398 |
+
| 0.2442 | 9900 | 0.0 | - |
|
| 399 |
+
| 0.2454 | 9950 | 0.0 | - |
|
| 400 |
+
| 0.2467 | 10000 | 0.0 | - |
|
| 401 |
+
| 0.2479 | 10050 | 0.0 | - |
|
| 402 |
+
| 0.2491 | 10100 | 0.0 | - |
|
| 403 |
+
| 0.2504 | 10150 | 0.0 | - |
|
| 404 |
+
| 0.2516 | 10200 | 0.0 | - |
|
| 405 |
+
| 0.2528 | 10250 | 0.0 | - |
|
| 406 |
+
| 0.2541 | 10300 | 0.0001 | - |
|
| 407 |
+
| 0.2553 | 10350 | 0.0001 | - |
|
| 408 |
+
| 0.2565 | 10400 | 0.0 | - |
|
| 409 |
+
| 0.2578 | 10450 | 0.0 | - |
|
| 410 |
+
| 0.2590 | 10500 | 0.0 | - |
|
| 411 |
+
| 0.2602 | 10550 | 0.0 | - |
|
| 412 |
+
| 0.2615 | 10600 | 0.0 | - |
|
| 413 |
+
| 0.2627 | 10650 | 0.0 | - |
|
| 414 |
+
| 0.2639 | 10700 | 0.0 | - |
|
| 415 |
+
| 0.2652 | 10750 | 0.0 | - |
|
| 416 |
+
| 0.2664 | 10800 | 0.0 | - |
|
| 417 |
+
| 0.2676 | 10850 | 0.0 | - |
|
| 418 |
+
| 0.2689 | 10900 | 0.0 | - |
|
| 419 |
+
| 0.2701 | 10950 | 0.0 | - |
|
| 420 |
+
| 0.2713 | 11000 | 0.0 | - |
|
| 421 |
+
| 0.2726 | 11050 | 0.0 | - |
|
| 422 |
+
| 0.2738 | 11100 | 0.0 | - |
|
| 423 |
+
| 0.2750 | 11150 | 0.0 | - |
|
| 424 |
+
| 0.2763 | 11200 | 0.0 | - |
|
| 425 |
+
| 0.2775 | 11250 | 0.0 | - |
|
| 426 |
+
| 0.2787 | 11300 | 0.0 | - |
|
| 427 |
+
| 0.2800 | 11350 | 0.0 | - |
|
| 428 |
+
| 0.2812 | 11400 | 0.0 | - |
|
| 429 |
+
| 0.2824 | 11450 | 0.0 | - |
|
| 430 |
+
| 0.2837 | 11500 | 0.0 | - |
|
| 431 |
+
| 0.2849 | 11550 | 0.0 | - |
|
| 432 |
+
| 0.2861 | 11600 | 0.0 | - |
|
| 433 |
+
| 0.2874 | 11650 | 0.0001 | - |
|
| 434 |
+
| 0.2886 | 11700 | 0.0301 | - |
|
| 435 |
+
| 0.2898 | 11750 | 0.0 | - |
|
| 436 |
+
| 0.2911 | 11800 | 0.0 | - |
|
| 437 |
+
| 0.2923 | 11850 | 0.0 | - |
|
| 438 |
+
| 0.2935 | 11900 | 0.0 | - |
|
| 439 |
+
| 0.2948 | 11950 | 0.0 | - |
|
| 440 |
+
| 0.2960 | 12000 | 0.0 | - |
|
| 441 |
+
| 0.2972 | 12050 | 0.0 | - |
|
| 442 |
+
| 0.2985 | 12100 | 0.0 | - |
|
| 443 |
+
| 0.2997 | 12150 | 0.0 | - |
|
| 444 |
+
| 0.3009 | 12200 | 0.0001 | - |
|
| 445 |
+
| 0.3022 | 12250 | 0.0 | - |
|
| 446 |
+
| 0.3034 | 12300 | 0.0 | - |
|
| 447 |
+
| 0.3046 | 12350 | 0.0 | - |
|
| 448 |
+
| 0.3059 | 12400 | 0.0 | - |
|
| 449 |
+
| 0.3071 | 12450 | 0.0 | - |
|
| 450 |
+
| 0.3083 | 12500 | 0.0 | - |
|
| 451 |
+
| 0.3096 | 12550 | 0.0 | - |
|
| 452 |
+
| 0.3108 | 12600 | 0.0 | - |
|
| 453 |
+
| 0.3120 | 12650 | 0.0 | - |
|
| 454 |
+
| 0.3133 | 12700 | 0.0 | - |
|
| 455 |
+
| 0.3145 | 12750 | 0.0 | - |
|
| 456 |
+
| 0.3157 | 12800 | 0.0 | - |
|
| 457 |
+
| 0.3170 | 12850 | 0.0 | - |
|
| 458 |
+
| 0.3182 | 12900 | 0.0 | - |
|
| 459 |
+
| 0.3194 | 12950 | 0.0 | - |
|
| 460 |
+
| 0.3207 | 13000 | 0.0 | - |
|
| 461 |
+
| 0.3219 | 13050 | 0.0001 | - |
|
| 462 |
+
| 0.3231 | 13100 | 0.0 | - |
|
| 463 |
+
| 0.3244 | 13150 | 0.0 | - |
|
| 464 |
+
| 0.3256 | 13200 | 0.0 | - |
|
| 465 |
+
| 0.3268 | 13250 | 0.0 | - |
|
| 466 |
+
| 0.3281 | 13300 | 0.0 | - |
|
| 467 |
+
| 0.3293 | 13350 | 0.0 | - |
|
| 468 |
+
| 0.3305 | 13400 | 0.0 | - |
|
| 469 |
+
| 0.3318 | 13450 | 0.0 | - |
|
| 470 |
+
| 0.3330 | 13500 | 0.0 | - |
|
| 471 |
+
| 0.3342 | 13550 | 0.0 | - |
|
| 472 |
+
| 0.3355 | 13600 | 0.0 | - |
|
| 473 |
+
| 0.3367 | 13650 | 0.0 | - |
|
| 474 |
+
| 0.3379 | 13700 | 0.0 | - |
|
| 475 |
+
| 0.3392 | 13750 | 0.0 | - |
|
| 476 |
+
| 0.3404 | 13800 | 0.0 | - |
|
| 477 |
+
| 0.3416 | 13850 | 0.0 | - |
|
| 478 |
+
| 0.3429 | 13900 | 0.0 | - |
|
| 479 |
+
| 0.3441 | 13950 | 0.0 | - |
|
| 480 |
+
| 0.3453 | 14000 | 0.0 | - |
|
| 481 |
+
| 0.3466 | 14050 | 0.0 | - |
|
| 482 |
+
| 0.3478 | 14100 | 0.0 | - |
|
| 483 |
+
| 0.3490 | 14150 | 0.0 | - |
|
| 484 |
+
| 0.3503 | 14200 | 0.0 | - |
|
| 485 |
+
| 0.3515 | 14250 | 0.0 | - |
|
| 486 |
+
| 0.3527 | 14300 | 0.0 | - |
|
| 487 |
+
| 0.3540 | 14350 | 0.0 | - |
|
| 488 |
+
| 0.3552 | 14400 | 0.0001 | - |
|
| 489 |
+
| 0.3564 | 14450 | 0.0 | - |
|
| 490 |
+
| 0.3577 | 14500 | 0.0 | - |
|
| 491 |
+
| 0.3589 | 14550 | 0.0 | - |
|
| 492 |
+
| 0.3601 | 14600 | 0.0 | - |
|
| 493 |
+
| 0.3614 | 14650 | 0.0 | - |
|
| 494 |
+
| 0.3626 | 14700 | 0.0 | - |
|
| 495 |
+
| 0.3638 | 14750 | 0.0 | - |
|
| 496 |
+
| 0.3651 | 14800 | 0.0 | - |
|
| 497 |
+
| 0.3663 | 14850 | 0.0 | - |
|
| 498 |
+
| 0.3675 | 14900 | 0.0 | - |
|
| 499 |
+
| 0.3688 | 14950 | 0.0 | - |
|
| 500 |
+
| 0.3700 | 15000 | 0.0 | - |
|
| 501 |
+
| 0.3712 | 15050 | 0.0 | - |
|
| 502 |
+
| 0.3725 | 15100 | 0.0 | - |
|
| 503 |
+
| 0.3737 | 15150 | 0.0 | - |
|
| 504 |
+
| 0.3749 | 15200 | 0.0 | - |
|
| 505 |
+
| 0.3762 | 15250 | 0.0 | - |
|
| 506 |
+
| 0.3774 | 15300 | 0.0 | - |
|
| 507 |
+
| 0.3786 | 15350 | 0.0 | - |
|
| 508 |
+
| 0.3799 | 15400 | 0.0 | - |
|
| 509 |
+
| 0.3811 | 15450 | 0.0 | - |
|
| 510 |
+
| 0.3823 | 15500 | 0.0 | - |
|
| 511 |
+
| 0.3836 | 15550 | 0.0 | - |
|
| 512 |
+
| 0.3848 | 15600 | 0.0 | - |
|
| 513 |
+
| 0.3860 | 15650 | 0.0 | - |
|
| 514 |
+
| 0.3873 | 15700 | 0.0 | - |
|
| 515 |
+
| 0.3885 | 15750 | 0.0 | - |
|
| 516 |
+
| 0.3897 | 15800 | 0.0001 | - |
|
| 517 |
+
| 0.3910 | 15850 | 0.0 | - |
|
| 518 |
+
| 0.3922 | 15900 | 0.0 | - |
|
| 519 |
+
| 0.3934 | 15950 | 0.0 | - |
|
| 520 |
+
| 0.3947 | 16000 | 0.0 | - |
|
| 521 |
+
| 0.3959 | 16050 | 0.0 | - |
|
| 522 |
+
| 0.3971 | 16100 | 0.0 | - |
|
| 523 |
+
| 0.3984 | 16150 | 0.0 | - |
|
| 524 |
+
| 0.3996 | 16200 | 0.0 | - |
|
| 525 |
+
| 0.4008 | 16250 | 0.0 | - |
|
| 526 |
+
| 0.4021 | 16300 | 0.0 | - |
|
| 527 |
+
| 0.4033 | 16350 | 0.0 | - |
|
| 528 |
+
| 0.4045 | 16400 | 0.0 | - |
|
| 529 |
+
| 0.4058 | 16450 | 0.0001 | - |
|
| 530 |
+
| 0.4070 | 16500 | 0.0 | - |
|
| 531 |
+
| 0.4082 | 16550 | 0.0 | - |
|
| 532 |
+
| 0.4095 | 16600 | 0.0 | - |
|
| 533 |
+
| 0.4107 | 16650 | 0.0 | - |
|
| 534 |
+
| 0.4119 | 16700 | 0.0 | - |
|
| 535 |
+
| 0.4132 | 16750 | 0.0 | - |
|
| 536 |
+
| 0.4144 | 16800 | 0.0001 | - |
|
| 537 |
+
| 0.4156 | 16850 | 0.0 | - |
|
| 538 |
+
| 0.4169 | 16900 | 0.0 | - |
|
| 539 |
+
| 0.4181 | 16950 | 0.0 | - |
|
| 540 |
+
| 0.4193 | 17000 | 0.0 | - |
|
| 541 |
+
| 0.4206 | 17050 | 0.0 | - |
|
| 542 |
+
| 0.4218 | 17100 | 0.0 | - |
|
| 543 |
+
| 0.4230 | 17150 | 0.0 | - |
|
| 544 |
+
| 0.4243 | 17200 | 0.0 | - |
|
| 545 |
+
| 0.4255 | 17250 | 0.0 | - |
|
| 546 |
+
| 0.4267 | 17300 | 0.0 | - |
|
| 547 |
+
| 0.4280 | 17350 | 0.0 | - |
|
| 548 |
+
| 0.4292 | 17400 | 0.0 | - |
|
| 549 |
+
| 0.4304 | 17450 | 0.0 | - |
|
| 550 |
+
| 0.4317 | 17500 | 0.0 | - |
|
| 551 |
+
| 0.4329 | 17550 | 0.0 | - |
|
| 552 |
+
| 0.4341 | 17600 | 0.0 | - |
|
| 553 |
+
| 0.4354 | 17650 | 0.0 | - |
|
| 554 |
+
| 0.4366 | 17700 | 0.0 | - |
|
| 555 |
+
| 0.4378 | 17750 | 0.0 | - |
|
| 556 |
+
| 0.4391 | 17800 | 0.0 | - |
|
| 557 |
+
| 0.4403 | 17850 | 0.0 | - |
|
| 558 |
+
| 0.4415 | 17900 | 0.0 | - |
|
| 559 |
+
| 0.4428 | 17950 | 0.0 | - |
|
| 560 |
+
| 0.4440 | 18000 | 0.0 | - |
|
| 561 |
+
| 0.4452 | 18050 | 0.0 | - |
|
| 562 |
+
| 0.4465 | 18100 | 0.0 | - |
|
| 563 |
+
| 0.4477 | 18150 | 0.0 | - |
|
| 564 |
+
| 0.4489 | 18200 | 0.0 | - |
|
| 565 |
+
| 0.4502 | 18250 | 0.0 | - |
|
| 566 |
+
| 0.4514 | 18300 | 0.0 | - |
|
| 567 |
+
| 0.4526 | 18350 | 0.0 | - |
|
| 568 |
+
| 0.4539 | 18400 | 0.0 | - |
|
| 569 |
+
| 0.4551 | 18450 | 0.0001 | - |
|
| 570 |
+
| 0.4563 | 18500 | 0.0 | - |
|
| 571 |
+
| 0.4576 | 18550 | 0.0 | - |
|
| 572 |
+
| 0.4588 | 18600 | 0.0 | - |
|
| 573 |
+
| 0.4600 | 18650 | 0.0 | - |
|
| 574 |
+
| 0.4613 | 18700 | 0.0 | - |
|
| 575 |
+
| 0.4625 | 18750 | 0.0 | - |
|
| 576 |
+
| 0.4637 | 18800 | 0.0 | - |
|
| 577 |
+
| 0.4650 | 18850 | 0.0 | - |
|
| 578 |
+
| 0.4662 | 18900 | 0.0 | - |
|
| 579 |
+
| 0.4674 | 18950 | 0.0 | - |
|
| 580 |
+
| 0.4687 | 19000 | 0.0 | - |
|
| 581 |
+
| 0.4699 | 19050 | 0.0 | - |
|
| 582 |
+
| 0.4711 | 19100 | 0.0 | - |
|
| 583 |
+
| 0.4724 | 19150 | 0.0 | - |
|
| 584 |
+
| 0.4736 | 19200 | 0.0 | - |
|
| 585 |
+
| 0.4748 | 19250 | 0.0 | - |
|
| 586 |
+
| 0.4761 | 19300 | 0.0 | - |
|
| 587 |
+
| 0.4773 | 19350 | 0.0 | - |
|
| 588 |
+
| 0.4785 | 19400 | 0.0 | - |
|
| 589 |
+
| 0.4798 | 19450 | 0.0 | - |
|
| 590 |
+
| 0.4810 | 19500 | 0.0 | - |
|
| 591 |
+
| 0.4822 | 19550 | 0.0 | - |
|
| 592 |
+
| 0.4835 | 19600 | 0.0 | - |
|
| 593 |
+
| 0.4847 | 19650 | 0.0 | - |
|
| 594 |
+
| 0.4859 | 19700 | 0.0 | - |
|
| 595 |
+
| 0.4872 | 19750 | 0.0 | - |
|
| 596 |
+
| 0.4884 | 19800 | 0.0 | - |
|
| 597 |
+
| 0.4896 | 19850 | 0.0 | - |
|
| 598 |
+
| 0.4909 | 19900 | 0.0 | - |
|
| 599 |
+
| 0.4921 | 19950 | 0.0 | - |
|
| 600 |
+
| 0.4933 | 20000 | 0.0 | - |
|
| 601 |
+
| 0.4946 | 20050 | 0.0 | - |
|
| 602 |
+
| 0.4958 | 20100 | 0.0 | - |
|
| 603 |
+
| 0.4970 | 20150 | 0.0 | - |
|
| 604 |
+
| 0.4983 | 20200 | 0.0 | - |
|
| 605 |
+
| 0.4995 | 20250 | 0.0 | - |
|
| 606 |
+
| 0.5007 | 20300 | 0.0 | - |
|
| 607 |
+
| 0.5020 | 20350 | 0.0 | - |
|
| 608 |
+
| 0.5032 | 20400 | 0.0001 | - |
|
| 609 |
+
| 0.5044 | 20450 | 0.0 | - |
|
| 610 |
+
| 0.5057 | 20500 | 0.0 | - |
|
| 611 |
+
| 0.5069 | 20550 | 0.0 | - |
|
| 612 |
+
| 0.5081 | 20600 | 0.0 | - |
|
| 613 |
+
| 0.5094 | 20650 | 0.0 | - |
|
| 614 |
+
| 0.5106 | 20700 | 0.0 | - |
|
| 615 |
+
| 0.5118 | 20750 | 0.0 | - |
|
| 616 |
+
| 0.5131 | 20800 | 0.0 | - |
|
| 617 |
+
| 0.5143 | 20850 | 0.0 | - |
|
| 618 |
+
| 0.5155 | 20900 | 0.0 | - |
|
| 619 |
+
| 0.5168 | 20950 | 0.0 | - |
|
| 620 |
+
| 0.5180 | 21000 | 0.0 | - |
|
| 621 |
+
| 0.5192 | 21050 | 0.0 | - |
|
| 622 |
+
| 0.5205 | 21100 | 0.0 | - |
|
| 623 |
+
| 0.5217 | 21150 | 0.0001 | - |
|
| 624 |
+
| 0.5229 | 21200 | 0.0 | - |
|
| 625 |
+
| 0.5242 | 21250 | 0.0 | - |
|
| 626 |
+
| 0.5254 | 21300 | 0.0 | - |
|
| 627 |
+
| 0.5266 | 21350 | 0.0 | - |
|
| 628 |
+
| 0.5279 | 21400 | 0.0 | - |
|
| 629 |
+
| 0.5291 | 21450 | 0.0001 | - |
|
| 630 |
+
| 0.5303 | 21500 | 0.0 | - |
|
| 631 |
+
| 0.5316 | 21550 | 0.0 | - |
|
| 632 |
+
| 0.5328 | 21600 | 0.0 | - |
|
| 633 |
+
| 0.5340 | 21650 | 0.0 | - |
|
| 634 |
+
| 0.5353 | 21700 | 0.0 | - |
|
| 635 |
+
| 0.5365 | 21750 | 0.0 | - |
|
| 636 |
+
| 0.5377 | 21800 | 0.0 | - |
|
| 637 |
+
| 0.5390 | 21850 | 0.0 | - |
|
| 638 |
+
| 0.5402 | 21900 | 0.0 | - |
|
| 639 |
+
| 0.5414 | 21950 | 0.0 | - |
|
| 640 |
+
| 0.5427 | 22000 | 0.0 | - |
|
| 641 |
+
| 0.5439 | 22050 | 0.0 | - |
|
| 642 |
+
| 0.5451 | 22100 | 0.0 | - |
|
| 643 |
+
| 0.5464 | 22150 | 0.0 | - |
|
| 644 |
+
| 0.5476 | 22200 | 0.0 | - |
|
| 645 |
+
| 0.5488 | 22250 | 0.0 | - |
|
| 646 |
+
| 0.5501 | 22300 | 0.0001 | - |
|
| 647 |
+
| 0.5513 | 22350 | 0.0 | - |
|
| 648 |
+
| 0.5525 | 22400 | 0.0 | - |
|
| 649 |
+
| 0.5538 | 22450 | 0.0 | - |
|
| 650 |
+
| 0.5550 | 22500 | 0.0 | - |
|
| 651 |
+
| 0.5562 | 22550 | 0.0 | - |
|
| 652 |
+
| 0.5575 | 22600 | 0.0 | - |
|
| 653 |
+
| 0.5587 | 22650 | 0.0 | - |
|
| 654 |
+
| 0.5599 | 22700 | 0.0 | - |
|
| 655 |
+
| 0.5612 | 22750 | 0.0 | - |
|
| 656 |
+
| 0.5624 | 22800 | 0.0 | - |
|
| 657 |
+
| 0.5636 | 22850 | 0.0 | - |
|
| 658 |
+
| 0.5649 | 22900 | 0.0 | - |
|
| 659 |
+
| 0.5661 | 22950 | 0.0 | - |
|
| 660 |
+
| 0.5673 | 23000 | 0.0 | - |
|
| 661 |
+
| 0.5686 | 23050 | 0.0 | - |
|
| 662 |
+
| 0.5698 | 23100 | 0.0 | - |
|
| 663 |
+
| 0.5710 | 23150 | 0.0 | - |
|
| 664 |
+
| 0.5723 | 23200 | 0.0 | - |
|
| 665 |
+
| 0.5735 | 23250 | 0.0 | - |
|
| 666 |
+
| 0.5747 | 23300 | 0.0 | - |
|
| 667 |
+
| 0.5760 | 23350 | 0.0 | - |
|
| 668 |
+
| 0.5772 | 23400 | 0.0 | - |
|
| 669 |
+
| 0.5784 | 23450 | 0.0 | - |
|
| 670 |
+
| 0.5797 | 23500 | 0.0 | - |
|
| 671 |
+
| 0.5809 | 23550 | 0.0 | - |
|
| 672 |
+
| 0.5821 | 23600 | 0.0 | - |
|
| 673 |
+
| 0.5834 | 23650 | 0.0 | - |
|
| 674 |
+
| 0.5846 | 23700 | 0.0 | - |
|
| 675 |
+
| 0.5858 | 23750 | 0.0 | - |
|
| 676 |
+
| 0.5871 | 23800 | 0.0001 | - |
|
| 677 |
+
| 0.5883 | 23850 | 0.0 | - |
|
| 678 |
+
| 0.5895 | 23900 | 0.0 | - |
|
| 679 |
+
| 0.5908 | 23950 | 0.0 | - |
|
| 680 |
+
| 0.5920 | 24000 | 0.0 | - |
|
| 681 |
+
| 0.5932 | 24050 | 0.0 | - |
|
| 682 |
+
| 0.5945 | 24100 | 0.0 | - |
|
| 683 |
+
| 0.5957 | 24150 | 0.0 | - |
|
| 684 |
+
| 0.5969 | 24200 | 0.0 | - |
|
| 685 |
+
| 0.5982 | 24250 | 0.0 | - |
|
| 686 |
+
| 0.5994 | 24300 | 0.0 | - |
|
| 687 |
+
| 0.6006 | 24350 | 0.0 | - |
|
| 688 |
+
| 0.6019 | 24400 | 0.0 | - |
|
| 689 |
+
| 0.6031 | 24450 | 0.0 | - |
|
| 690 |
+
| 0.6043 | 24500 | 0.0 | - |
|
| 691 |
+
| 0.6056 | 24550 | 0.0 | - |
|
| 692 |
+
| 0.6068 | 24600 | 0.0 | - |
|
| 693 |
+
| 0.6080 | 24650 | 0.0 | - |
|
| 694 |
+
| 0.6093 | 24700 | 0.0 | - |
|
| 695 |
+
| 0.6105 | 24750 | 0.0 | - |
|
| 696 |
+
| 0.6117 | 24800 | 0.0 | - |
|
| 697 |
+
| 0.6130 | 24850 | 0.0001 | - |
|
| 698 |
+
| 0.6142 | 24900 | 0.0 | - |
|
| 699 |
+
| 0.6154 | 24950 | 0.0 | - |
|
| 700 |
+
| 0.6167 | 25000 | 0.0001 | - |
|
| 701 |
+
| 0.6179 | 25050 | 0.0 | - |
|
| 702 |
+
| 0.6191 | 25100 | 0.0 | - |
|
| 703 |
+
| 0.6204 | 25150 | 0.0 | - |
|
| 704 |
+
| 0.6216 | 25200 | 0.0 | - |
|
| 705 |
+
| 0.6228 | 25250 | 0.0 | - |
|
| 706 |
+
| 0.6241 | 25300 | 0.0 | - |
|
| 707 |
+
| 0.6253 | 25350 | 0.0 | - |
|
| 708 |
+
| 0.6265 | 25400 | 0.0 | - |
|
| 709 |
+
| 0.6278 | 25450 | 0.0 | - |
|
| 710 |
+
| 0.6290 | 25500 | 0.0 | - |
|
| 711 |
+
| 0.6302 | 25550 | 0.0 | - |
|
| 712 |
+
| 0.6315 | 25600 | 0.0 | - |
|
| 713 |
+
| 0.6327 | 25650 | 0.0 | - |
|
| 714 |
+
| 0.6339 | 25700 | 0.0 | - |
|
| 715 |
+
| 0.6352 | 25750 | 0.0001 | - |
|
| 716 |
+
| 0.6364 | 25800 | 0.0 | - |
|
| 717 |
+
| 0.6376 | 25850 | 0.0 | - |
|
| 718 |
+
| 0.6389 | 25900 | 0.0 | - |
|
| 719 |
+
| 0.6401 | 25950 | 0.0 | - |
|
| 720 |
+
| 0.6413 | 26000 | 0.0 | - |
|
| 721 |
+
| 0.6426 | 26050 | 0.0 | - |
|
| 722 |
+
| 0.6438 | 26100 | 0.0 | - |
|
| 723 |
+
| 0.6450 | 26150 | 0.0 | - |
|
| 724 |
+
| 0.6463 | 26200 | 0.0 | - |
|
| 725 |
+
| 0.6475 | 26250 | 0.0 | - |
|
| 726 |
+
| 0.6487 | 26300 | 0.0 | - |
|
| 727 |
+
| 0.6500 | 26350 | 0.0 | - |
|
| 728 |
+
| 0.6512 | 26400 | 0.0 | - |
|
| 729 |
+
| 0.6524 | 26450 | 0.0 | - |
|
| 730 |
+
| 0.6537 | 26500 | 0.0 | - |
|
| 731 |
+
| 0.6549 | 26550 | 0.0 | - |
|
| 732 |
+
| 0.6561 | 26600 | 0.0 | - |
|
| 733 |
+
| 0.6574 | 26650 | 0.0 | - |
|
| 734 |
+
| 0.6586 | 26700 | 0.0 | - |
|
| 735 |
+
| 0.6598 | 26750 | 0.0 | - |
|
| 736 |
+
| 0.6611 | 26800 | 0.0 | - |
|
| 737 |
+
| 0.6623 | 26850 | 0.0 | - |
|
| 738 |
+
| 0.6635 | 26900 | 0.0 | - |
|
| 739 |
+
| 0.6648 | 26950 | 0.0 | - |
|
| 740 |
+
| 0.6660 | 27000 | 0.0 | - |
|
| 741 |
+
| 0.6672 | 27050 | 0.0 | - |
|
| 742 |
+
| 0.6685 | 27100 | 0.0 | - |
|
| 743 |
+
| 0.6697 | 27150 | 0.0 | - |
|
| 744 |
+
| 0.6709 | 27200 | 0.0 | - |
|
| 745 |
+
| 0.6722 | 27250 | 0.0 | - |
|
| 746 |
+
| 0.6734 | 27300 | 0.0 | - |
|
| 747 |
+
| 0.6746 | 27350 | 0.0 | - |
|
| 748 |
+
| 0.6759 | 27400 | 0.0 | - |
|
| 749 |
+
| 0.6771 | 27450 | 0.0 | - |
|
| 750 |
+
| 0.6783 | 27500 | 0.0 | - |
|
| 751 |
+
| 0.6796 | 27550 | 0.0 | - |
|
| 752 |
+
| 0.6808 | 27600 | 0.0 | - |
|
| 753 |
+
| 0.6820 | 27650 | 0.0 | - |
|
| 754 |
+
| 0.6833 | 27700 | 0.0 | - |
|
| 755 |
+
| 0.6845 | 27750 | 0.0 | - |
|
| 756 |
+
| 0.6857 | 27800 | 0.0 | - |
|
| 757 |
+
| 0.6870 | 27850 | 0.0 | - |
|
| 758 |
+
| 0.6882 | 27900 | 0.0 | - |
|
| 759 |
+
| 0.6894 | 27950 | 0.0 | - |
|
| 760 |
+
| 0.6907 | 28000 | 0.0 | - |
|
| 761 |
+
| 0.6919 | 28050 | 0.0 | - |
|
| 762 |
+
| 0.6931 | 28100 | 0.0 | - |
|
| 763 |
+
| 0.6944 | 28150 | 0.0 | - |
|
| 764 |
+
| 0.6956 | 28200 | 0.0 | - |
|
| 765 |
+
| 0.6968 | 28250 | 0.0 | - |
|
| 766 |
+
| 0.6981 | 28300 | 0.0 | - |
|
| 767 |
+
| 0.6993 | 28350 | 0.0 | - |
|
| 768 |
+
| 0.7005 | 28400 | 0.0 | - |
|
| 769 |
+
| 0.7018 | 28450 | 0.0 | - |
|
| 770 |
+
| 0.7030 | 28500 | 0.0 | - |
|
| 771 |
+
| 0.7042 | 28550 | 0.0 | - |
|
| 772 |
+
| 0.7055 | 28600 | 0.0 | - |
|
| 773 |
+
| 0.7067 | 28650 | 0.0 | - |
|
| 774 |
+
| 0.7079 | 28700 | 0.0 | - |
|
| 775 |
+
| 0.7092 | 28750 | 0.0 | - |
|
| 776 |
+
| 0.7104 | 28800 | 0.0 | - |
|
| 777 |
+
| 0.7116 | 28850 | 0.0 | - |
|
| 778 |
+
| 0.7129 | 28900 | 0.0 | - |
|
| 779 |
+
| 0.7141 | 28950 | 0.0 | - |
|
| 780 |
+
| 0.7153 | 29000 | 0.0 | - |
|
| 781 |
+
| 0.7166 | 29050 | 0.0 | - |
|
| 782 |
+
| 0.7178 | 29100 | 0.0 | - |
|
| 783 |
+
| 0.7190 | 29150 | 0.0 | - |
|
| 784 |
+
| 0.7203 | 29200 | 0.0001 | - |
|
| 785 |
+
| 0.7215 | 29250 | 0.0 | - |
|
| 786 |
+
| 0.7227 | 29300 | 0.0 | - |
|
| 787 |
+
| 0.7240 | 29350 | 0.0 | - |
|
| 788 |
+
| 0.7252 | 29400 | 0.0 | - |
|
| 789 |
+
| 0.7264 | 29450 | 0.0 | - |
|
| 790 |
+
| 0.7277 | 29500 | 0.0 | - |
|
| 791 |
+
| 0.7289 | 29550 | 0.0 | - |
|
| 792 |
+
| 0.7301 | 29600 | 0.0 | - |
|
| 793 |
+
| 0.7314 | 29650 | 0.0 | - |
|
| 794 |
+
| 0.7326 | 29700 | 0.0 | - |
|
| 795 |
+
| 0.7338 | 29750 | 0.0 | - |
|
| 796 |
+
| 0.7351 | 29800 | 0.0 | - |
|
| 797 |
+
| 0.7363 | 29850 | 0.0 | - |
|
| 798 |
+
| 0.7375 | 29900 | 0.0 | - |
|
| 799 |
+
| 0.7388 | 29950 | 0.0 | - |
|
| 800 |
+
| 0.7400 | 30000 | 0.0 | - |
|
| 801 |
+
| 0.7412 | 30050 | 0.0 | - |
|
| 802 |
+
| 0.7425 | 30100 | 0.0 | - |
|
| 803 |
+
| 0.7437 | 30150 | 0.0 | - |
|
| 804 |
+
| 0.7449 | 30200 | 0.0 | - |
|
| 805 |
+
| 0.7462 | 30250 | 0.0 | - |
|
| 806 |
+
| 0.7474 | 30300 | 0.0 | - |
|
| 807 |
+
| 0.7486 | 30350 | 0.0 | - |
|
| 808 |
+
| 0.7499 | 30400 | 0.0 | - |
|
| 809 |
+
| 0.7511 | 30450 | 0.0 | - |
|
| 810 |
+
| 0.7523 | 30500 | 0.0 | - |
|
| 811 |
+
| 0.7536 | 30550 | 0.0 | - |
|
| 812 |
+
| 0.7548 | 30600 | 0.0 | - |
|
| 813 |
+
| 0.7560 | 30650 | 0.0 | - |
|
| 814 |
+
| 0.7573 | 30700 | 0.0001 | - |
|
| 815 |
+
| 0.7585 | 30750 | 0.0 | - |
|
| 816 |
+
| 0.7597 | 30800 | 0.0 | - |
|
| 817 |
+
| 0.7610 | 30850 | 0.0 | - |
|
| 818 |
+
| 0.7622 | 30900 | 0.0 | - |
|
| 819 |
+
| 0.7634 | 30950 | 0.0 | - |
|
| 820 |
+
| 0.7647 | 31000 | 0.0 | - |
|
| 821 |
+
| 0.7659 | 31050 | 0.0 | - |
|
| 822 |
+
| 0.7671 | 31100 | 0.0 | - |
|
| 823 |
+
| 0.7684 | 31150 | 0.0 | - |
|
| 824 |
+
| 0.7696 | 31200 | 0.0 | - |
|
| 825 |
+
| 0.7708 | 31250 | 0.0 | - |
|
| 826 |
+
| 0.7721 | 31300 | 0.0 | - |
|
| 827 |
+
| 0.7733 | 31350 | 0.0 | - |
|
| 828 |
+
| 0.7745 | 31400 | 0.0 | - |
|
| 829 |
+
| 0.7758 | 31450 | 0.0 | - |
|
| 830 |
+
| 0.7770 | 31500 | 0.0 | - |
|
| 831 |
+
| 0.7782 | 31550 | 0.0 | - |
|
| 832 |
+
| 0.7795 | 31600 | 0.0 | - |
|
| 833 |
+
| 0.7807 | 31650 | 0.0 | - |
|
| 834 |
+
| 0.7819 | 31700 | 0.0 | - |
|
| 835 |
+
| 0.7832 | 31750 | 0.0 | - |
|
| 836 |
+
| 0.7844 | 31800 | 0.0 | - |
|
| 837 |
+
| 0.7856 | 31850 | 0.0 | - |
|
| 838 |
+
| 0.7869 | 31900 | 0.0 | - |
|
| 839 |
+
| 0.7881 | 31950 | 0.0 | - |
|
| 840 |
+
| 0.7893 | 32000 | 0.0 | - |
|
| 841 |
+
| 0.7906 | 32050 | 0.0 | - |
|
| 842 |
+
| 0.7918 | 32100 | 0.0 | - |
|
| 843 |
+
| 0.7930 | 32150 | 0.0 | - |
|
| 844 |
+
| 0.7943 | 32200 | 0.0 | - |
|
| 845 |
+
| 0.7955 | 32250 | 0.0 | - |
|
| 846 |
+
| 0.7967 | 32300 | 0.0 | - |
|
| 847 |
+
| 0.7980 | 32350 | 0.0 | - |
|
| 848 |
+
| 0.7992 | 32400 | 0.0 | - |
|
| 849 |
+
| 0.8004 | 32450 | 0.0 | - |
|
| 850 |
+
| 0.8017 | 32500 | 0.0 | - |
|
| 851 |
+
| 0.8029 | 32550 | 0.0 | - |
|
| 852 |
+
| 0.8041 | 32600 | 0.0 | - |
|
| 853 |
+
| 0.8054 | 32650 | 0.0 | - |
|
| 854 |
+
| 0.8066 | 32700 | 0.0 | - |
|
| 855 |
+
| 0.8078 | 32750 | 0.0 | - |
|
| 856 |
+
| 0.8091 | 32800 | 0.0 | - |
|
| 857 |
+
| 0.8103 | 32850 | 0.0 | - |
|
| 858 |
+
| 0.8115 | 32900 | 0.0 | - |
|
| 859 |
+
| 0.8128 | 32950 | 0.0 | - |
|
| 860 |
+
| 0.8140 | 33000 | 0.0 | - |
|
| 861 |
+
| 0.8152 | 33050 | 0.0 | - |
|
| 862 |
+
| 0.8165 | 33100 | 0.0 | - |
|
| 863 |
+
| 0.8177 | 33150 | 0.0 | - |
|
| 864 |
+
| 0.8189 | 33200 | 0.0 | - |
|
| 865 |
+
| 0.8202 | 33250 | 0.0 | - |
|
| 866 |
+
| 0.8214 | 33300 | 0.0 | - |
|
| 867 |
+
| 0.8226 | 33350 | 0.0 | - |
|
| 868 |
+
| 0.8239 | 33400 | 0.0 | - |
|
| 869 |
+
| 0.8251 | 33450 | 0.0001 | - |
|
| 870 |
+
| 0.8263 | 33500 | 0.0 | - |
|
| 871 |
+
| 0.8276 | 33550 | 0.0 | - |
|
| 872 |
+
| 0.8288 | 33600 | 0.0 | - |
|
| 873 |
+
| 0.8300 | 33650 | 0.0 | - |
|
| 874 |
+
| 0.8313 | 33700 | 0.0 | - |
|
| 875 |
+
| 0.8325 | 33750 | 0.0 | - |
|
| 876 |
+
| 0.8337 | 33800 | 0.0 | - |
|
| 877 |
+
| 0.8350 | 33850 | 0.0 | - |
|
| 878 |
+
| 0.8362 | 33900 | 0.0 | - |
|
| 879 |
+
| 0.8374 | 33950 | 0.0 | - |
|
| 880 |
+
| 0.8387 | 34000 | 0.0 | - |
|
| 881 |
+
| 0.8399 | 34050 | 0.0 | - |
|
| 882 |
+
| 0.8411 | 34100 | 0.0 | - |
|
| 883 |
+
| 0.8424 | 34150 | 0.0 | - |
|
| 884 |
+
| 0.8436 | 34200 | 0.0 | - |
|
| 885 |
+
| 0.8448 | 34250 | 0.0 | - |
|
| 886 |
+
| 0.8461 | 34300 | 0.0 | - |
|
| 887 |
+
| 0.8473 | 34350 | 0.0 | - |
|
| 888 |
+
| 0.8485 | 34400 | 0.0 | - |
|
| 889 |
+
| 0.8498 | 34450 | 0.0 | - |
|
| 890 |
+
| 0.8510 | 34500 | 0.0 | - |
|
| 891 |
+
| 0.8522 | 34550 | 0.0 | - |
|
| 892 |
+
| 0.8535 | 34600 | 0.0 | - |
|
| 893 |
+
| 0.8547 | 34650 | 0.0 | - |
|
| 894 |
+
| 0.8559 | 34700 | 0.0 | - |
|
| 895 |
+
| 0.8572 | 34750 | 0.0 | - |
|
| 896 |
+
| 0.8584 | 34800 | 0.0 | - |
|
| 897 |
+
| 0.8596 | 34850 | 0.0 | - |
|
| 898 |
+
| 0.8609 | 34900 | 0.0 | - |
|
| 899 |
+
| 0.8621 | 34950 | 0.0 | - |
|
| 900 |
+
| 0.8633 | 35000 | 0.0 | - |
|
| 901 |
+
| 0.8646 | 35050 | 0.0 | - |
|
| 902 |
+
| 0.8658 | 35100 | 0.0 | - |
|
| 903 |
+
| 0.8670 | 35150 | 0.0 | - |
|
| 904 |
+
| 0.8683 | 35200 | 0.0 | - |
|
| 905 |
+
| 0.8695 | 35250 | 0.0 | - |
|
| 906 |
+
| 0.8707 | 35300 | 0.0 | - |
|
| 907 |
+
| 0.8720 | 35350 | 0.0 | - |
|
| 908 |
+
| 0.8732 | 35400 | 0.0 | - |
|
| 909 |
+
| 0.8744 | 35450 | 0.0 | - |
|
| 910 |
+
| 0.8757 | 35500 | 0.0 | - |
|
| 911 |
+
| 0.8769 | 35550 | 0.0 | - |
|
| 912 |
+
| 0.8781 | 35600 | 0.0 | - |
|
| 913 |
+
| 0.8794 | 35650 | 0.0 | - |
|
| 914 |
+
| 0.8806 | 35700 | 0.0 | - |
|
| 915 |
+
| 0.8818 | 35750 | 0.0 | - |
|
| 916 |
+
| 0.8831 | 35800 | 0.0 | - |
|
| 917 |
+
| 0.8843 | 35850 | 0.0 | - |
|
| 918 |
+
| 0.8855 | 35900 | 0.0 | - |
|
| 919 |
+
| 0.8868 | 35950 | 0.0 | - |
|
| 920 |
+
| 0.8880 | 36000 | 0.0 | - |
|
| 921 |
+
| 0.8892 | 36050 | 0.0 | - |
|
| 922 |
+
| 0.8905 | 36100 | 0.0 | - |
|
| 923 |
+
| 0.8917 | 36150 | 0.0 | - |
|
| 924 |
+
| 0.8929 | 36200 | 0.0 | - |
|
| 925 |
+
| 0.8942 | 36250 | 0.0 | - |
|
| 926 |
+
| 0.8954 | 36300 | 0.0 | - |
|
| 927 |
+
| 0.8966 | 36350 | 0.0 | - |
|
| 928 |
+
| 0.8979 | 36400 | 0.0 | - |
|
| 929 |
+
| 0.8991 | 36450 | 0.0 | - |
|
| 930 |
+
| 0.9003 | 36500 | 0.0 | - |
|
| 931 |
+
| 0.9016 | 36550 | 0.0 | - |
|
| 932 |
+
| 0.9028 | 36600 | 0.0 | - |
|
| 933 |
+
| 0.9040 | 36650 | 0.0 | - |
|
| 934 |
+
| 0.9053 | 36700 | 0.0 | - |
|
| 935 |
+
| 0.9065 | 36750 | 0.0 | - |
|
| 936 |
+
| 0.9077 | 36800 | 0.0 | - |
|
| 937 |
+
| 0.9090 | 36850 | 0.0 | - |
|
| 938 |
+
| 0.9102 | 36900 | 0.0 | - |
|
| 939 |
+
| 0.9114 | 36950 | 0.0 | - |
|
| 940 |
+
| 0.9127 | 37000 | 0.0 | - |
|
| 941 |
+
| 0.9139 | 37050 | 0.0 | - |
|
| 942 |
+
| 0.9151 | 37100 | 0.0 | - |
|
| 943 |
+
| 0.9164 | 37150 | 0.0 | - |
|
| 944 |
+
| 0.9176 | 37200 | 0.0 | - |
|
| 945 |
+
| 0.9188 | 37250 | 0.0 | - |
|
| 946 |
+
| 0.9201 | 37300 | 0.0 | - |
|
| 947 |
+
| 0.9213 | 37350 | 0.0 | - |
|
| 948 |
+
| 0.9225 | 37400 | 0.0 | - |
|
| 949 |
+
| 0.9238 | 37450 | 0.0 | - |
|
| 950 |
+
| 0.9250 | 37500 | 0.0 | - |
|
| 951 |
+
| 0.9262 | 37550 | 0.0 | - |
|
| 952 |
+
| 0.9275 | 37600 | 0.0 | - |
|
| 953 |
+
| 0.9287 | 37650 | 0.0 | - |
|
| 954 |
+
| 0.9299 | 37700 | 0.0 | - |
|
| 955 |
+
| 0.9312 | 37750 | 0.0 | - |
|
| 956 |
+
| 0.9324 | 37800 | 0.0 | - |
|
| 957 |
+
| 0.9336 | 37850 | 0.0 | - |
|
| 958 |
+
| 0.9349 | 37900 | 0.0 | - |
|
| 959 |
+
| 0.9361 | 37950 | 0.0 | - |
|
| 960 |
+
| 0.9373 | 38000 | 0.0 | - |
|
| 961 |
+
| 0.9386 | 38050 | 0.0 | - |
|
| 962 |
+
| 0.9398 | 38100 | 0.0 | - |
|
| 963 |
+
| 0.9410 | 38150 | 0.0 | - |
|
| 964 |
+
| 0.9423 | 38200 | 0.0 | - |
|
| 965 |
+
| 0.9435 | 38250 | 0.0 | - |
|
| 966 |
+
| 0.9447 | 38300 | 0.0 | - |
|
| 967 |
+
| 0.9460 | 38350 | 0.0 | - |
|
| 968 |
+
| 0.9472 | 38400 | 0.0 | - |
|
| 969 |
+
| 0.9484 | 38450 | 0.0 | - |
|
| 970 |
+
| 0.9497 | 38500 | 0.0 | - |
|
| 971 |
+
| 0.9509 | 38550 | 0.0 | - |
|
| 972 |
+
| 0.9521 | 38600 | 0.0 | - |
|
| 973 |
+
| 0.9534 | 38650 | 0.0 | - |
|
| 974 |
+
| 0.9546 | 38700 | 0.0 | - |
|
| 975 |
+
| 0.9558 | 38750 | 0.0 | - |
|
| 976 |
+
| 0.9571 | 38800 | 0.0 | - |
|
| 977 |
+
| 0.9583 | 38850 | 0.0 | - |
|
| 978 |
+
| 0.9595 | 38900 | 0.0 | - |
|
| 979 |
+
| 0.9608 | 38950 | 0.0 | - |
|
| 980 |
+
| 0.9620 | 39000 | 0.0 | - |
|
| 981 |
+
| 0.9632 | 39050 | 0.0 | - |
|
| 982 |
+
| 0.9645 | 39100 | 0.0 | - |
|
| 983 |
+
| 0.9657 | 39150 | 0.0 | - |
|
| 984 |
+
| 0.9669 | 39200 | 0.0 | - |
|
| 985 |
+
| 0.9682 | 39250 | 0.0 | - |
|
| 986 |
+
| 0.9694 | 39300 | 0.0 | - |
|
| 987 |
+
| 0.9706 | 39350 | 0.0 | - |
|
| 988 |
+
| 0.9719 | 39400 | 0.0 | - |
|
| 989 |
+
| 0.9731 | 39450 | 0.0 | - |
|
| 990 |
+
| 0.9743 | 39500 | 0.0 | - |
|
| 991 |
+
| 0.9756 | 39550 | 0.0 | - |
|
| 992 |
+
| 0.9768 | 39600 | 0.0 | - |
|
| 993 |
+
| 0.9780 | 39650 | 0.0 | - |
|
| 994 |
+
| 0.9793 | 39700 | 0.0 | - |
|
| 995 |
+
| 0.9805 | 39750 | 0.0 | - |
|
| 996 |
+
| 0.9817 | 39800 | 0.0 | - |
|
| 997 |
+
| 0.9830 | 39850 | 0.0 | - |
|
| 998 |
+
| 0.9842 | 39900 | 0.0 | - |
|
| 999 |
+
| 0.9854 | 39950 | 0.0 | - |
|
| 1000 |
+
| 0.9867 | 40000 | 0.0 | - |
|
| 1001 |
+
| 0.9879 | 40050 | 0.0 | - |
|
| 1002 |
+
| 0.9891 | 40100 | 0.0 | - |
|
| 1003 |
+
| 0.9904 | 40150 | 0.0 | - |
|
| 1004 |
+
| 0.9916 | 40200 | 0.0 | - |
|
| 1005 |
+
| 0.9928 | 40250 | 0.0 | - |
|
| 1006 |
+
| 0.9941 | 40300 | 0.0 | - |
|
| 1007 |
+
| 0.9953 | 40350 | 0.0 | - |
|
| 1008 |
+
| 0.9965 | 40400 | 0.0 | - |
|
| 1009 |
+
| 0.9978 | 40450 | 0.0 | - |
|
| 1010 |
+
| 0.9990 | 40500 | 0.0 | - |
|
| 1011 |
+
|
| 1012 |
+
### Framework Versions
|
| 1013 |
+
- Python: 3.10.12
|
| 1014 |
+
- SetFit: 1.0.3
|
| 1015 |
+
- Sentence Transformers: 2.5.1
|
| 1016 |
+
- Transformers: 4.38.1
|
| 1017 |
+
- PyTorch: 2.1.0+cu121
|
| 1018 |
+
- Datasets: 2.18.0
|
| 1019 |
+
- Tokenizers: 0.15.2
|
| 1020 |
+
|
| 1021 |
+
## Citation
|
| 1022 |
+
|
| 1023 |
+
### BibTeX
|
| 1024 |
+
```bibtex
|
| 1025 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 1026 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 1027 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 1028 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 1029 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 1030 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 1031 |
+
publisher = {arXiv},
|
| 1032 |
+
year = {2022},
|
| 1033 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 1034 |
+
}
|
| 1035 |
+
```
|
| 1036 |
+
|
| 1037 |
+
<!--
|
| 1038 |
+
## Glossary
|
| 1039 |
+
|
| 1040 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1041 |
+
-->
|
| 1042 |
+
|
| 1043 |
+
<!--
|
| 1044 |
+
## Model Card Authors
|
| 1045 |
+
|
| 1046 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1047 |
+
-->
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Model Card Contact
|
| 1051 |
+
|
| 1052 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1053 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "LABEL_0"
|
| 14 |
+
},
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"intermediate_size": 3072,
|
| 17 |
+
"label2id": {
|
| 18 |
+
"LABEL_0": 0
|
| 19 |
+
},
|
| 20 |
+
"layer_norm_eps": 1e-12,
|
| 21 |
+
"max_position_embeddings": 512,
|
| 22 |
+
"model_type": "bert",
|
| 23 |
+
"num_attention_heads": 12,
|
| 24 |
+
"num_hidden_layers": 12,
|
| 25 |
+
"pad_token_id": 0,
|
| 26 |
+
"position_embedding_type": "absolute",
|
| 27 |
+
"torch_dtype": "float32",
|
| 28 |
+
"transformers_version": "4.38.1",
|
| 29 |
+
"type_vocab_size": 2,
|
| 30 |
+
"use_cache": true,
|
| 31 |
+
"vocab_size": 30522
|
| 32 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.2.2",
|
| 4 |
+
"transformers": "4.28.1",
|
| 5 |
+
"pytorch": "1.13.0+cu117"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null
|
| 9 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"normalize_embeddings": false,
|
| 3 |
+
"labels": [
|
| 4 |
+
"pit",
|
| 5 |
+
"peak",
|
| 6 |
+
"neither"
|
| 7 |
+
]
|
| 8 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27b5d718622cff12340bb1fb5c809f4d8623ed3bc84ad9db554dc781ca4db697
|
| 3 |
+
size 437951328
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a4defcf4a7d2e0939f6989e3f745a0b5dc8e70beedff980627729b497f233d2
|
| 3 |
+
size 19327
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|