Upload 2 files
Browse files
LICENSE
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Creative Commons Attribution 4.0 International (CC BY 4.0)
|
| 2 |
+
https://creativecommons.org/licenses/by/4.0/
|
README.md
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
dataset_name: SAM-TP Traversability Dataset
|
| 3 |
+
pretty_name: SAM-TP Traversability Dataset (Flattened)
|
| 4 |
+
tasks:
|
| 5 |
+
- image-segmentation
|
| 6 |
+
- semantic-segmentation
|
| 7 |
+
tags:
|
| 8 |
+
- robotics
|
| 9 |
+
- navigation
|
| 10 |
+
- traversability
|
| 11 |
+
- outdoor
|
| 12 |
+
- sam2
|
| 13 |
+
- bev
|
| 14 |
+
license: cc-by-4.0
|
| 15 |
+
annotations_creators:
|
| 16 |
+
- machine-assisted
|
| 17 |
+
- humans
|
| 18 |
+
language:
|
| 19 |
+
- en
|
| 20 |
+
size_categories:
|
| 21 |
+
- n<50K
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# SAM‑TP Traversability Dataset
|
| 25 |
+
|
| 26 |
+
This repository contains pixel‑wise **traversability masks** paired with egocentric RGB images, prepared in a **flat, filename‑aligned** layout that is convenient for training SAM‑2 / SAM‑TP‑style segmentation models.
|
| 27 |
+
|
| 28 |
+
> **Folder layout**
|
| 29 |
+
```
|
| 30 |
+
.
|
| 31 |
+
├─ images/ # RGB frames (.jpg/.png). Filenames are globally unique.
|
| 32 |
+
├─ annotations/ # Binary masks (.png/.jpg). Filenames match images 1‑to‑1.
|
| 33 |
+
└─ manifest.csv # Provenance rows and any missing‑pair notes.
|
| 34 |
+
```
|
| 35 |
+
Each `annotations/<FILENAME>` is the mask for `images/<FILENAME>` (same filename, different folder).
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## File naming
|
| 40 |
+
|
| 41 |
+
Filenames are made globally unique by concatenating the original subfolder path and the local stem with `__` separators, e.g.
|
| 42 |
+
```
|
| 43 |
+
ride_68496_8ef98b_20240716023032_517__1.jpg
|
| 44 |
+
ride_68496_8ef98b_20240716023032_517__1.png # corresponding mask
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## Mask format
|
| 50 |
+
|
| 51 |
+
- Single‑channel binary masks; foreground = **traversable**, background = **non‑traversable**.
|
| 52 |
+
- Stored as `.png` or `.jpg` depending on source. If your pipeline requires PNG, convert on the fly in your dataloader.
|
| 53 |
+
- Values are typically `{0, 255}`. You can binarize via `mask = (mask > 127).astype(np.uint8)`.
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## How to use
|
| 58 |
+
|
| 59 |
+
### A) Load with `datasets` (ImageFolder‑style)
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from datasets import load_dataset
|
| 63 |
+
from pathlib import Path
|
| 64 |
+
from PIL import Image
|
| 65 |
+
|
| 66 |
+
REPO = "jamiewjm/sam-tp" # e.g. "jamiewjm/sam-tp"
|
| 67 |
+
|
| 68 |
+
ds_imgs = load_dataset(
|
| 69 |
+
"imagefolder",
|
| 70 |
+
data_dir=".",
|
| 71 |
+
data_files={"image": f"hf://datasets/{REPO}/images/**"},
|
| 72 |
+
split="train",
|
| 73 |
+
)
|
| 74 |
+
ds_msks = load_dataset(
|
| 75 |
+
"imagefolder",
|
| 76 |
+
data_dir=".",
|
| 77 |
+
data_files={"mask": f"hf://datasets/{REPO}/annotations/**"},
|
| 78 |
+
split="train",
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Build a mask index by filename
|
| 82 |
+
mask_index = {Path(r["image"]["path"]).name: r["image"]["path"] for r in ds_msks}
|
| 83 |
+
|
| 84 |
+
row = ds_imgs[0]
|
| 85 |
+
img_path = Path(row["image"]["path"])
|
| 86 |
+
msk_path = Path(mask_index[img_path.name])
|
| 87 |
+
|
| 88 |
+
img = Image.open(img_path).convert("RGB")
|
| 89 |
+
msk = Image.open(msk_path).convert("L")
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### B) Minimal PyTorch dataset
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from pathlib import Path
|
| 96 |
+
from PIL import Image
|
| 97 |
+
from torch.utils.data import Dataset
|
| 98 |
+
|
| 99 |
+
class TraversabilityDataset(Dataset):
|
| 100 |
+
def __init__(self, root):
|
| 101 |
+
root = Path(root)
|
| 102 |
+
self.img_dir = root / "images"
|
| 103 |
+
self.msk_dir = root / "annotations"
|
| 104 |
+
self.items = sorted([p for p in self.img_dir.iterdir() if p.is_file()])
|
| 105 |
+
def __len__(self):
|
| 106 |
+
return len(self.items)
|
| 107 |
+
def __getitem__(self, idx):
|
| 108 |
+
ip = self.items[idx]
|
| 109 |
+
mp = self.msk_dir / ip.name
|
| 110 |
+
return Image.open(ip).convert("RGB"), Image.open(mp).convert("L")
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
### C) Pre‑processing notes for SAM‑2/SAM‑TP training
|
| 114 |
+
|
| 115 |
+
- Resize/pad to your training resolution (commonly **1024×1024**) with masks aligned.
|
| 116 |
+
- Normalize images per your backbone’s recipe.
|
| 117 |
+
- If your trainer expects COCO‑RLE masks, convert PNG → RLE in the dataloader stage.
|
| 118 |
+
|
| 119 |
+
---
|
| 120 |
+
|
| 121 |
+
## Provenance & splits
|
| 122 |
+
|
| 123 |
+
- The dataset was flattened from mirrored directory trees (images and annotations) with 1‑to‑1 filename alignment.
|
| 124 |
+
- If you create explicit `train/val/test` splits, please add a `split` column to a copy of `manifest.csv` and contribute it back.
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
+
|
| 128 |
+
## License
|
| 129 |
+
|
| 130 |
+
Data: **CC‑BY‑4.0** (Attribution). See `LICENSE` for details.
|
| 131 |
+
|
| 132 |
+
---
|
| 133 |
+
|
| 134 |
+
## Citation
|
| 135 |
+
|
| 136 |
+
If you use this dataset in academic or industrial research, please cite the accompanying paper/report describing the data collection and labeling protocol:
|
| 137 |
+
|
| 138 |
+
> **GeNIE: A Generalizable Navigation System for In-the-Wild Environments**
|
| 139 |
+
|
| 140 |
+
> Available at: [https://arxiv.org/abs/2506.17960](https://arxiv.org/abs/2506.17960)
|
| 141 |
+
|
| 142 |
+
> Contains the SAM-TP traversability dataset and evaluation methodology.
|
| 143 |
+
|
| 144 |
+
```
|
| 145 |
+
@article{wang2025genie,
|
| 146 |
+
title = {GeNIE: A Generalizable Navigation System for In-the-Wild Environments},
|
| 147 |
+
author = {Wang, Jiaming and et al.},
|
| 148 |
+
journal = {arXiv preprint arXiv:2506.17960},
|
| 149 |
+
year = {2025},
|
| 150 |
+
url = {https://arxiv.org/abs/2506.17960}
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
```
|
| 154 |
+
@misc{sam_tp_dataset,
|
| 155 |
+
title = {SAM‑TP Traversability Dataset},
|
| 156 |
+
howpublished = {Hugging Face Datasets},
|
| 157 |
+
year = {2025},
|
| 158 |
+
note = {URL: https://huggingface.co/datasets/jamiewjm/sam-tp}
|
| 159 |
+
}
|
| 160 |
+
```
|