Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,38 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of facebook/mbart-large-50-many-to-many-mmt, with only public data.
|
| 6 |
+
|
| 7 |
+
Usage:
|
| 8 |
+
|
| 9 |
+
```
|
| 10 |
+
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
| 11 |
+
from transformers import MbartTokenizer, AutoTokenizer
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("n8rob/kreyol-mt-pubtrain", do_lower_case=False, use_fast=False, keep_accents=True)
|
| 14 |
+
|
| 15 |
+
# Or use tokenizer = MbartTokenizer.from_pretrained("n8rob/kreyol-mt-pubtrain", use_fast=False)
|
| 16 |
+
|
| 17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("n8rob/kreyol-mt-pubtrain")
|
| 18 |
+
|
| 19 |
+
# Or use model = MBartForConditionalGeneration.from_pretrained("n8rob/kreyol-mt-pubtrain")
|
| 20 |
+
|
| 21 |
+
# First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
|
| 22 |
+
# For Hawaiian Creole to English translation, we need to use language indicator tags: fr_XX and en_XX where fr_XX represents Hawaiian Creole (hwc) and en_XX represents English (eng).
|
| 23 |
+
# For a mapping of the original language and language code (3 character) to mBART-50 compatible language tokens consider the following dictionary:
|
| 24 |
+
# {} ## Add this
|
| 25 |
+
# Note: We mapped languages to their language tokens manually. For example, we used en_XX, fr_XX, es_XX for English, French and Spanish as in the original mBART-50 model. But then we repurposed other tokens for Creoles.
|
| 26 |
+
|
| 27 |
+
# As for what the language codes and their corresponding languages are, please refer to: https://github.com/JHU-CLSP/Kreyol-MT?tab=readme-ov-file#building-machine-translation-for-latin-american-caribbean-and-colonial-african-creole-languages
|
| 28 |
+
|
| 29 |
+
inp = tokenizer('Wen dey wen stretch him out fo whip him real hard , Paul wen tell da captain dat stay dea , "Dis okay in da rules fo da Rome peopo ? fo you fo whip one guy dat get da same rights jalike da Rome peopo ? even one guy dat neva do notting wrong ?" </s> fr_XX', add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
| 30 |
+
|
| 31 |
+
model.eval() # Set dropouts to zero
|
| 32 |
+
|
| 33 |
+
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=60, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("en_XX"))
|
| 34 |
+
|
| 35 |
+
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 36 |
+
|
| 37 |
+
print(decoded_output)
|
| 38 |
+
```
|