--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - video-classification - generated_from_trainer metrics: - accuracy model-index: - name: ucf101_42 results: [] --- # ucf101_42 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on the ucf101 dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - Accuracy: 0.7958 - Test Accuracy: 0.7958 - Df Accuracy: 0.9353 - Unlearn Overall Accuracy: 0.4302 - Unlearn Time: 4452.2733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Overall Accuracy | Unlearn Overall Accuracy | Time | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------------:|:------------------------:|:----:| | No log | 1.01 | 300 | 0.8241 | 0.9538 | 0.4216 | 0.4216 | -1 | | No log | 2.01 | 600 | 1.0017 | 0.8892 | 0.4249 | 0.4249 | -1 | | No log | 2.99 | 894 | 0.8121 | 0.9353 | 0.4302 | 0.4302 | -1 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2