jialicheng's picture
Upload folder using huggingface_hub
e4bfe14 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
  - audio-classification
  - generated_from_trainer
datasets:
  - superb
metrics:
  - accuracy
model-index:
  - name: superb_ks_42
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: superb
          type: superb
          config: ks
          split: validation
          args: ks
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6215063253898205

superb_ks_42

This model is a fine-tuned version of facebook/wav2vec2-large on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 80.4388
  • Accuracy: 0.6215
  • Test Accuracy: 0.6215
  • Df Accuracy: 0.1346
  • Unlearn Overall Accuracy: 0.7435
  • Unlearn Time: 640.7721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
No log 1.0 189 7.6645 0.1343 0.7433 0.7433 -1
No log 2.0 378 30.0267 0.2179 0.7179 0.7179 -1
No log 3.0 567 58.5008 0.1343 0.7433 0.7433 -1
No log 4.0 756 74.2509 0.1432 0.7403 0.7403 -1
No log 5.0 945 80.4388 0.1346 0.7435 0.7435 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2