feat: added further GLUE models
Browse files- modeling_for_glue.py +160 -1
modeling_for_glue.py
CHANGED
|
@@ -3,7 +3,7 @@ from typing import Optional, Union, Tuple
|
|
| 3 |
import torch
|
| 4 |
from torch import nn
|
| 5 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 6 |
-
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 7 |
|
| 8 |
from .modeling_bert import BertPreTrainedModel, BertModel
|
| 9 |
from .configuration_bert import JinaBertConfig
|
|
@@ -102,3 +102,162 @@ class BertForSequenceClassification(BertPreTrainedModel):
|
|
| 102 |
hidden_states=outputs.hidden_states,
|
| 103 |
attentions=outputs.attentions,
|
| 104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
from torch import nn
|
| 5 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 6 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, QuestionAnsweringModelOutput, TokenClassifierOutput
|
| 7 |
|
| 8 |
from .modeling_bert import BertPreTrainedModel, BertModel
|
| 9 |
from .configuration_bert import JinaBertConfig
|
|
|
|
| 102 |
hidden_states=outputs.hidden_states,
|
| 103 |
attentions=outputs.attentions,
|
| 104 |
)
|
| 105 |
+
|
| 106 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
| 107 |
+
def __init__(self, config: JinaBertConfig):
|
| 108 |
+
super().__init__(config)
|
| 109 |
+
self.num_labels = config.num_labels
|
| 110 |
+
|
| 111 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 112 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 113 |
+
|
| 114 |
+
# Initialize weights and apply final processing
|
| 115 |
+
self.post_init()
|
| 116 |
+
|
| 117 |
+
def forward(
|
| 118 |
+
self,
|
| 119 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 120 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 121 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 122 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 123 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 124 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 125 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 126 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 127 |
+
output_attentions: Optional[bool] = None,
|
| 128 |
+
output_hidden_states: Optional[bool] = None,
|
| 129 |
+
return_dict: Optional[bool] = None,
|
| 130 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 131 |
+
r"""
|
| 132 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 133 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 134 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 135 |
+
are not taken into account for computing the loss.
|
| 136 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 137 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 138 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 139 |
+
are not taken into account for computing the loss.
|
| 140 |
+
"""
|
| 141 |
+
return_dict = (
|
| 142 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
outputs = self.bert(
|
| 146 |
+
input_ids,
|
| 147 |
+
attention_mask=attention_mask,
|
| 148 |
+
token_type_ids=token_type_ids,
|
| 149 |
+
position_ids=position_ids,
|
| 150 |
+
head_mask=head_mask,
|
| 151 |
+
inputs_embeds=inputs_embeds,
|
| 152 |
+
output_attentions=output_attentions,
|
| 153 |
+
output_hidden_states=output_hidden_states,
|
| 154 |
+
return_dict=return_dict,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
sequence_output = outputs[0]
|
| 158 |
+
|
| 159 |
+
logits = self.qa_outputs(sequence_output)
|
| 160 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 161 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 162 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 163 |
+
|
| 164 |
+
total_loss = None
|
| 165 |
+
if start_positions is not None and end_positions is not None:
|
| 166 |
+
# If we are on multi-GPU, split add a dimension
|
| 167 |
+
if len(start_positions.size()) > 1:
|
| 168 |
+
start_positions = start_positions.squeeze(-1)
|
| 169 |
+
if len(end_positions.size()) > 1:
|
| 170 |
+
end_positions = end_positions.squeeze(-1)
|
| 171 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 172 |
+
ignored_index = start_logits.size(1)
|
| 173 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 174 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 175 |
+
|
| 176 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 177 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 178 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 179 |
+
total_loss = (start_loss + end_loss) / 2
|
| 180 |
+
|
| 181 |
+
if not return_dict:
|
| 182 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 183 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 184 |
+
|
| 185 |
+
return QuestionAnsweringModelOutput(
|
| 186 |
+
loss=total_loss,
|
| 187 |
+
start_logits=start_logits,
|
| 188 |
+
end_logits=end_logits,
|
| 189 |
+
hidden_states=outputs.hidden_states,
|
| 190 |
+
attentions=outputs.attentions,
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
| 195 |
+
def __init__(self, config: JinaBertConfig):
|
| 196 |
+
super().__init__(config)
|
| 197 |
+
self.num_labels = config.num_labels
|
| 198 |
+
|
| 199 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 200 |
+
classifier_dropout = (
|
| 201 |
+
config.classifier_dropout
|
| 202 |
+
if config.classifier_dropout is not None
|
| 203 |
+
else config.hidden_dropout_prob
|
| 204 |
+
)
|
| 205 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 206 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 207 |
+
|
| 208 |
+
# Initialize weights and apply final processing
|
| 209 |
+
self.post_init()
|
| 210 |
+
|
| 211 |
+
def forward(
|
| 212 |
+
self,
|
| 213 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 214 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 215 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 216 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 217 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 218 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 219 |
+
labels: Optional[torch.Tensor] = None,
|
| 220 |
+
output_attentions: Optional[bool] = None,
|
| 221 |
+
output_hidden_states: Optional[bool] = None,
|
| 222 |
+
return_dict: Optional[bool] = None,
|
| 223 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 224 |
+
r"""
|
| 225 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 226 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 227 |
+
"""
|
| 228 |
+
return_dict = (
|
| 229 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
outputs = self.bert(
|
| 233 |
+
input_ids,
|
| 234 |
+
attention_mask=attention_mask,
|
| 235 |
+
token_type_ids=token_type_ids,
|
| 236 |
+
position_ids=position_ids,
|
| 237 |
+
head_mask=head_mask,
|
| 238 |
+
inputs_embeds=inputs_embeds,
|
| 239 |
+
output_attentions=output_attentions,
|
| 240 |
+
output_hidden_states=output_hidden_states,
|
| 241 |
+
return_dict=return_dict,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
sequence_output = outputs[0]
|
| 245 |
+
|
| 246 |
+
sequence_output = self.dropout(sequence_output)
|
| 247 |
+
logits = self.classifier(sequence_output)
|
| 248 |
+
|
| 249 |
+
loss = None
|
| 250 |
+
if labels is not None:
|
| 251 |
+
loss_fct = CrossEntropyLoss()
|
| 252 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 253 |
+
|
| 254 |
+
if not return_dict:
|
| 255 |
+
output = (logits,) + outputs[2:]
|
| 256 |
+
return ((loss,) + output) if loss is not None else output
|
| 257 |
+
|
| 258 |
+
return TokenClassifierOutput(
|
| 259 |
+
loss=loss,
|
| 260 |
+
logits=logits,
|
| 261 |
+
hidden_states=outputs.hidden_states,
|
| 262 |
+
attentions=outputs.attentions,
|
| 263 |
+
)
|