Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen2.5-Coder-1.5B
|
| 4 |
+
license: cc-by-nc-4.0
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
<br><br>
|
| 8 |
+
|
| 9 |
+
<p align="center">
|
| 10 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
| 11 |
+
</p>
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
<b>The code embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 15 |
+
</p>
|
| 16 |
+
|
| 17 |
+
# Jina Embeddings c1: A Small but Performant Code Embedding Model
|
| 18 |
+
|
| 19 |
+
## Intended Usage & Model Info
|
| 20 |
+
`jina-embeddings-c1` is an embedding model for code retrieval.
|
| 21 |
+
The model supports various types of code retrieval (text-to-code, code-to-code, code-to-text, code-to-completion) and technical question answering across 15+ programming languages.
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
Built on [Qwen/Qwen2.5-Coder-1.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B), `jina-embeddings-c1-1.5B` features:
|
| 25 |
+
|
| 26 |
+
- **Multilingual support** (15+ programming languages) and compatibility with a wide range of domains, including web development, software development, machine learning, data science, and educational coding problems.
|
| 27 |
+
- **Task-specific instruction prefixes** for NL2Code, Code2Code, Code2NL, Code2Completion, and Technical QA, which can be selected at inference time.
|
| 28 |
+
- **Flexible embedding size**: dense embeddings are 896-dimensional by default but can be truncated to as low as 64 with minimal performance loss.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
Summary of features:
|
| 32 |
+
|
| 33 |
+
| Feature | Jina Embeddings C1 1.5B |
|
| 34 |
+
|------------|------------|
|
| 35 |
+
| Base Model | Qwen2.5-Coder-1.5B |
|
| 36 |
+
| Supported Tasks | `nl2code`, `code2code`, `code2nl`, `code2completion`, `qa` |
|
| 37 |
+
| Model DType | BFloat 16 |
|
| 38 |
+
| Max Sequence Length | 32768 |
|
| 39 |
+
| Embedding Vector Dimension | 1536 |
|
| 40 |
+
| Matryoshka dimensions | 128, 256, 512, 1024, 1536 |
|
| 41 |
+
| Pooling Strategy | Last-token pooling |
|
| 42 |
+
| Attention Mechanism | FlashAttention2 |
|
| 43 |
+
|
| 44 |
+
## Usage
|
| 45 |
+
|
| 46 |
+
<details>
|
| 47 |
+
<summary>Requirements</a></summary>
|
| 48 |
+
|
| 49 |
+
The following Python packages are required:
|
| 50 |
+
|
| 51 |
+
- `transformers>=4.53.0`
|
| 52 |
+
- `torch>=2.7.1`
|
| 53 |
+
|
| 54 |
+
### Optional / Recommended
|
| 55 |
+
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
|
| 56 |
+
- **sentence-transformers**: If you want to use the model via the `sentence-transformers` interface, install this package as well.
|
| 57 |
+
</details>
|
| 58 |
+
|
| 59 |
+
<details>
|
| 60 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
# !pip install transformers>=4.53.0 torch>=2.7.1
|
| 64 |
+
|
| 65 |
+
from transformers import AutoModel
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
# Initialize the model
|
| 69 |
+
model = AutoModel.from_pretrained("jinaai/jina-embeddings-c1-1.5B", trust_remote_code=True)
|
| 70 |
+
model.to("cuda")
|
| 71 |
+
|
| 72 |
+
# Configure truncate_dim, max_length, batch_size in the encode function if needed
|
| 73 |
+
|
| 74 |
+
# Encode query
|
| 75 |
+
query_embeddings = model.encode(
|
| 76 |
+
["print hello world in python"],
|
| 77 |
+
task="nl2code",
|
| 78 |
+
prompt_name="query",
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Encode passage
|
| 82 |
+
passage_embeddings = model.encode(
|
| 83 |
+
["print('Hello World!')"],
|
| 84 |
+
task="nl2code",
|
| 85 |
+
prompt_name="passage",
|
| 86 |
+
)
|
| 87 |
+
```
|
| 88 |
+
</details>
|
| 89 |
+
|
| 90 |
+
<details>
|
| 91 |
+
<summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
# !pip install sentence_transformers>=5.0.0 torch>=2.7.1
|
| 95 |
+
|
| 96 |
+
import torch
|
| 97 |
+
from sentence_transformers import SentenceTransformer
|
| 98 |
+
|
| 99 |
+
# Load the model
|
| 100 |
+
model = SentenceTransformer(
|
| 101 |
+
"jinaai/jina-embeddings-c1-1.5B",
|
| 102 |
+
model_kwargs={
|
| 103 |
+
"torch_dtype": torch.bfloat16,
|
| 104 |
+
"attn_implementation": "flash_attention_2",
|
| 105 |
+
"device_map": "auto"
|
| 106 |
+
}
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# The queries and documents to embed
|
| 110 |
+
queries = [
|
| 111 |
+
"print hello world in python",
|
| 112 |
+
"initialize array of 5 zeros in c++"
|
| 113 |
+
]
|
| 114 |
+
documents = [
|
| 115 |
+
"print('Hello World!')",
|
| 116 |
+
"int arr[5] = {0, 0, 0, 0, 0};"
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
query_embeddings = model.encode(queries, prompt_name="nl2code_query")
|
| 120 |
+
document_embeddings = model.encode(documents, prompt_name="nl2code_document")
|
| 121 |
+
|
| 122 |
+
# Compute the (cosine) similarity between the query and document embeddings
|
| 123 |
+
similarity = model.similarity(query_embeddings, document_embeddings)
|
| 124 |
+
print(similarity)
|
| 125 |
+
# tensor([[0.8157, 0.1222],
|
| 126 |
+
# [0.1201, 0.5500]])
|
| 127 |
+
```
|
| 128 |
+
</details>
|
| 129 |
+
|
| 130 |
+
## Training & Evaluation
|
| 131 |
+
|
| 132 |
+
Please refer to our technical report of jina-embeddings-c1 for training details and benchmarks.
|
| 133 |
+
|
| 134 |
+
## Contact
|
| 135 |
+
|
| 136 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|