Update modeling_xlm_roberta_for_glue.py
Browse files
modeling_xlm_roberta_for_glue.py
CHANGED
|
@@ -6,16 +6,16 @@ from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
|
| 6 |
from transformers.modeling_outputs import SequenceClassifierOutput, QuestionAnsweringModelOutput, TokenClassifierOutput
|
| 7 |
|
| 8 |
from .modeling_bert import XLMRobertaPreTrainedModel, XLMRobertaModel
|
| 9 |
-
from .
|
| 10 |
|
| 11 |
|
| 12 |
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
| 13 |
-
def __init__(self, config:
|
| 14 |
super().__init__(config)
|
| 15 |
self.num_labels = config.num_labels
|
| 16 |
self.config = config
|
| 17 |
|
| 18 |
-
self.
|
| 19 |
classifier_dropout = (
|
| 20 |
config.classifier_dropout
|
| 21 |
if config.classifier_dropout is not None
|
|
@@ -56,11 +56,16 @@ class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
|
| 56 |
assert output_attentions is None
|
| 57 |
assert output_hidden_states is None
|
| 58 |
assert return_dict
|
| 59 |
-
outputs = self.
|
| 60 |
input_ids,
|
| 61 |
attention_mask=attention_mask,
|
| 62 |
token_type_ids=token_type_ids,
|
| 63 |
position_ids=position_ids,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
|
| 66 |
pooled_output = outputs[1]
|
|
|
|
| 6 |
from transformers.modeling_outputs import SequenceClassifierOutput, QuestionAnsweringModelOutput, TokenClassifierOutput
|
| 7 |
|
| 8 |
from .modeling_bert import XLMRobertaPreTrainedModel, XLMRobertaModel
|
| 9 |
+
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
| 10 |
|
| 11 |
|
| 12 |
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
| 13 |
+
def __init__(self, config: XLMRobertaFlashConfig):
|
| 14 |
super().__init__(config)
|
| 15 |
self.num_labels = config.num_labels
|
| 16 |
self.config = config
|
| 17 |
|
| 18 |
+
self.roberta = XLMRobertaModel(config)
|
| 19 |
classifier_dropout = (
|
| 20 |
config.classifier_dropout
|
| 21 |
if config.classifier_dropout is not None
|
|
|
|
| 56 |
assert output_attentions is None
|
| 57 |
assert output_hidden_states is None
|
| 58 |
assert return_dict
|
| 59 |
+
outputs = self.roberta(
|
| 60 |
input_ids,
|
| 61 |
attention_mask=attention_mask,
|
| 62 |
token_type_ids=token_type_ids,
|
| 63 |
position_ids=position_ids,
|
| 64 |
+
head_mask=head_mask,
|
| 65 |
+
inputs_embeds=inputs_embeds,
|
| 66 |
+
output_attentions=output_attentions,
|
| 67 |
+
output_hidden_states=output_hidden_states,
|
| 68 |
+
return_dict=return_dict,
|
| 69 |
)
|
| 70 |
|
| 71 |
pooled_output = outputs[1]
|