--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: bio-mqa results: [] --- # bio-mqa This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1830 - Accuracy: 0.6185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0695 | 1.0 | 18387 | 0.9820 | 0.5833 | | 0.8957 | 2.0 | 36774 | 0.9734 | 0.6154 | | 0.7079 | 3.0 | 55161 | 1.1830 | 0.6185 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu118 - Datasets 3.5.0 - Tokenizers 0.21.1