Update README.md
Browse files
README.md
CHANGED
|
@@ -37,7 +37,6 @@ model = AutoModelForCausalLM.from_pretrained("jrc/phi3-mini-math", trust_remote_
|
|
| 37 |
|
| 38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
| 39 |
|
| 40 |
-
CMD:
|
| 41 |
```bash
|
| 42 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
| 43 |
```
|
|
@@ -56,7 +55,6 @@ tune run lora_finetune_distributed.py --config mini_lora.yaml
|
|
| 56 |
|
| 57 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
| 58 |
|
| 59 |
-
CMD:
|
| 60 |
```bash
|
| 61 |
tune run eleuther_eval --config eleuther_evaluation \
|
| 62 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
|
@@ -64,7 +62,6 @@ tune run eleuther_eval --config eleuther_evaluation \
|
|
| 64 |
batch_size=32
|
| 65 |
```
|
| 66 |
|
| 67 |
-
RESULTS:
|
| 68 |
|
| 69 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
| 70 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
|
@@ -87,28 +84,6 @@ RESULTS:
|
|
| 87 |
|
| 88 |
Max VRAM used per GPU: 29 GB
|
| 89 |
|
| 90 |
-
## Citation [optional]
|
| 91 |
-
|
| 92 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 93 |
-
|
| 94 |
-
**BibTeX:**
|
| 95 |
-
|
| 96 |
-
[More Information Needed]
|
| 97 |
-
|
| 98 |
-
**APA:**
|
| 99 |
-
|
| 100 |
-
[More Information Needed]
|
| 101 |
-
|
| 102 |
-
## Glossary [optional]
|
| 103 |
-
|
| 104 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 105 |
-
|
| 106 |
-
[More Information Needed]
|
| 107 |
-
|
| 108 |
-
## More Information [optional]
|
| 109 |
-
|
| 110 |
-
[More Information Needed]
|
| 111 |
-
|
| 112 |
## Model Card Contact
|
| 113 |
|
| 114 |
[More Information Needed]
|
|
|
|
| 37 |
|
| 38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
| 39 |
|
|
|
|
| 40 |
```bash
|
| 41 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
| 42 |
```
|
|
|
|
| 55 |
|
| 56 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
| 57 |
|
|
|
|
| 58 |
```bash
|
| 59 |
tune run eleuther_eval --config eleuther_evaluation \
|
| 60 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
|
|
|
| 62 |
batch_size=32
|
| 63 |
```
|
| 64 |
|
|
|
|
| 65 |
|
| 66 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
| 67 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
|
|
|
| 84 |
|
| 85 |
Max VRAM used per GPU: 29 GB
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
## Model Card Contact
|
| 88 |
|
| 89 |
[More Information Needed]
|