File size: 12,790 Bytes
9b5b518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import math, torch, torch.nn as nn, torch.nn.functional as F
from transformers import PretrainedConfig, PreTrainedModel, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from typing import Optional, Tuple, List
class GPT4DevConfig(PretrainedConfig):
model_type = "gpt4dev"
def __init__(
self,
vocab_size=50257,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
max_position_embeddings=1024,
rope_theta=10000.0,
qkv_bias=True,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
multi_query=True,
architectures=None,
tie_word_embeddings=False,
compat_prefill_tokens: int = 0,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
max_position_embeddings=max_position_embeddings,
rope_theta=rope_theta,
qkv_bias=qkv_bias,
layer_norm_epsilon=layer_norm_epsilon,
initializer_range=initializer_range,
multi_query=multi_query,
architectures=architectures,
tie_word_embeddings=tie_word_embeddings,
compat_prefill_tokens=compat_prefill_tokens,
**kwargs,
)
def rope_cache(seq_len, dim, theta, device, dtype=torch.float32):
# Note: kept float32 to match training-time math used in early checkpoints
inv = 1.0 / (theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
t = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, inv)
return torch.polar(torch.ones_like(freqs), freqs).to(dtype)
def apply_rope(x, rope):
# x: (..., D) with D even; rope: (T, D/2). In legacy math this can be float (cos-only)
xc = torch.view_as_complex(x.to(torch.float32).reshape(*x.shape[:-1], -1, 2))
yc = xc * rope.to(xc.dtype)
y = torch.view_as_real(yc).reshape(*x.shape[:-1], -1)
return y.to(x.dtype)
class MQA(nn.Module):
def __init__(self, config: GPT4DevConfig):
super().__init__()
h, d = config.num_attention_heads, config.hidden_size // config.num_attention_heads
self.h, self.d = h, d
self.qkv = nn.Linear(config.hidden_size, h * d + 2 * d, bias=config.qkv_bias)
self.out = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
def forward(
self,
x: torch.Tensor,
rope: torch.Tensor,
past_kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
B, T, _ = x.shape
qkv = self.qkv(x)
q, kv = qkv.split(self.h * self.d, dim=-1)
k_new, v_new = kv.split(self.d, dim=-1) # (B, T, d)
# queries to head dim; apply RoPE
q = q.view(B, T, self.h, self.d).transpose(1, 2) # (B, h, T, d)
q = apply_rope(q, rope)
# rotate new k
k_new = apply_rope(k_new.unsqueeze(1), rope).squeeze(1) # (B, T, d)
# concat cache
if past_kv is not None and past_kv[0] is not None:
k_cat = torch.cat([past_kv[0], k_new], dim=1)
v_cat = torch.cat([past_kv[1], v_new], dim=1)
else:
k_cat, v_cat = k_new, v_new
# expand KV
k_exp = k_cat.unsqueeze(1).expand(-1, self.h, -1, -1) # (B, h, S, d)
v_exp = v_cat.unsqueeze(1).expand(-1, self.h, -1, -1) # (B, h, S, d)
B, h, T, d = q.shape
S = k_exp.size(2)
past_len = S - T
attn = torch.matmul(q, k_exp.transpose(-2, -1)) / math.sqrt(d)
# Offset-aware causal mask
idx_t = torch.arange(T, device=q.device)[:, None]
idx_s = torch.arange(S, device=q.device)[None, :]
mask = idx_s > idx_t + past_len
attn = attn.masked_fill(mask.unsqueeze(0).unsqueeze(0), float('-inf'))
attn = F.softmax(attn, dim=-1)
y = torch.matmul(attn, v_exp)
y = y.transpose(1, 2).reshape(B, T, -1)
return self.out(y), (k_cat, v_cat)
def forward_compat(self, x: torch.Tensor, rope: torch.Tensor) -> torch.Tensor:
B, T, _ = x.shape
qkv = self.qkv(x)
q, kv = qkv.split(self.h * self.d, dim=-1)
k, v = kv.split(self.d, dim=-1)
q = q.view(B, T, self.h, self.d).transpose(1, 2) # (B,h,T,d)
k = k.unsqueeze(1).expand(-1, self.h, -1, -1) # (B,h,T,d)
v = v.unsqueeze(1).expand(-1, self.h, -1, -1) # (B,h,T,d)
q = apply_rope(q, rope)
k = apply_rope(k, rope)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
return self.out(y.transpose(1, 2).reshape(B, T, -1))
class SwiGLU(nn.Module):
def __init__(self, hidden_dim, intermediate_dim):
super().__init__()
self.w1 = nn.Linear(hidden_dim, intermediate_dim * 2, bias=True)
self.w2 = nn.Linear(intermediate_dim, hidden_dim, bias=False)
def forward(self, x):
x_g, x_v = self.w1(x).chunk(2, dim=-1)
return self.w2(F.silu(x_g) * x_v)
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.attn = MQA(config) if config.multi_query else nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, bias=config.qkv_bias, batch_first=True)
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = SwiGLU(config.hidden_size, config.intermediate_size)
self.gradient_checkpointing = False
def forward(
self,
x: torch.Tensor,
rope: torch.Tensor,
past_kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_checkpoint: bool = False,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
def custom_forward(x_, rope_):
a, new_kv = self.attn(self.ln1(x_), rope_, past_kv)
x_ = x_ + a
x_ = x_ + self.mlp(self.ln2(x_))
return x_, new_kv
if use_checkpoint and self.training:
y, new_kv = torch.utils.checkpoint.checkpoint(custom_forward, x, rope, use_reentrant=False)
return y, new_kv
else:
return custom_forward(x, rope)
def forward_compat(self, x: torch.Tensor, rope: torch.Tensor, use_checkpoint: bool = False) -> torch.Tensor:
def custom_forward(x_, rope_):
a = self.attn.forward_compat(self.ln1(x_), rope_)
x_ = x_ + a
x_ = x_ + self.mlp(self.ln2(x_))
return x_
if use_checkpoint and self.training:
return torch.utils.checkpoint.checkpoint(custom_forward, x, rope, use_reentrant=False)
else:
return custom_forward(x, rope)
class GPT4DevPreTrained(PreTrainedModel):
config_class = GPT4DevConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["Block"]
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
nn.init.zeros_(module.bias)
class GPT4DevForCausalLM(GPT4DevPreTrained, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.embed = nn.Embedding(config.vocab_size, config.hidden_size)
self.blocks = nn.ModuleList([Block(config) for _ in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_cache = None
self.post_init()
# embeddings tie helpers
def get_input_embeddings(self):
return self.embed
def set_input_embeddings(self, new_embeddings):
self.embed = new_embeddings
if getattr(self.config, "tie_word_embeddings", True) and self.get_output_embeddings() is not None:
with torch.no_grad():
self.get_output_embeddings().weight = self.embed.weight
def get_output_embeddings(self):
return self.head
def set_output_embeddings(self, new_lm_head):
self.head = new_lm_head
def tie_weights(self):
if getattr(self.config, "tie_word_embeddings", True):
self.head.weight = self.embed.weight
# generation helpers (legacy tuple KV-cache)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, past_key_values=None, **kwargs):
# Until compat_prefill_tokens, avoid slicing and ignore cache to mirror legacy behavior
cutoff = int(getattr(self.config, "compat_prefill_tokens", 0) or 0)
if past_key_values is not None and input_ids is not None and input_ids.size(1) < cutoff:
past_key_values = None # drop cache, process full prefix
elif past_key_values is not None:
# normal cached decode path
input_ids = input_ids[:, -1:]
if attention_mask is not None and attention_mask.dim() == 2 and torch.all(attention_mask == 1):
attention_mask = None
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": True}
def _reorder_cache(self, past_key_values, beam_idx):
if isinstance(past_key_values, (tuple, list)):
reordered = []
for k, v in past_key_values:
if k is None or v is None:
reordered.append((k, v))
else:
reordered.append((k.index_select(0, beam_idx), v.index_select(0, beam_idx)))
return tuple(reordered)
return past_key_values
# RoPE utilities (kept float32 behavior to mirror training)
def _rope_slice(self, past_len: int, T: int, device, dtype):
if self.rope_cache is None or self.rope_cache.device != device:
self.rope_cache = rope_cache(
self.config.max_position_embeddings,
self.config.hidden_size // self.config.num_attention_heads,
self.config.rope_theta, device, dtype=torch.float32
)
need = past_len + T
if need > self.rope_cache.size(0):
self.rope_cache = rope_cache(
self.config.max_position_embeddings,
self.config.hidden_size // self.config.num_attention_heads,
self.config.rope_theta, device, dtype=torch.float32
)
return self.rope_cache[past_len: past_len + T]
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, Block):
module.gradient_checkpointing = value
def forward(
self,
input_ids,
labels=None,
attention_mask=None,
past_key_values=None,
use_cache=None,
**kwargs,
):
B, T = input_ids.shape
x = self.embed(input_ids)
past = past_key_values
use_cache = True if (use_cache is None) else use_cache
new_past: List[Tuple[torch.Tensor, torch.Tensor]] = [] if use_cache else None
past_len = 0
if past is not None and isinstance(past, (tuple, list)) and past and past[0] is not None:
past_len = past[0][0].size(1)
rope = self._rope_slice(past_len, T, x.device, x.dtype)
for i, blk in enumerate(self.blocks):
pkv = None if past is None else (past[i] if i < len(past) else None)
x, new_kv = blk(x, rope, past_kv=pkv, use_checkpoint=(self.is_gradient_checkpointing and self.training))
if use_cache and new_past is not None:
new_past.append(new_kv)
logits = self.head(self.ln_f(x))
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
ignore_index=-100,
)
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=tuple(new_past) if use_cache else None,
)
GPT4DevConfig.auto_map = {
"AutoConfig": "modeling_gpt4dev.GPT4DevConfig",
"AutoModel": "modeling_gpt4dev.GPT4DevForCausalLM",
"AutoModelForCausalLM": "modeling_gpt4dev.GPT4DevForCausalLM",
}
|