t-m-6 commited on
Commit
5d26094
·
verified ·
1 Parent(s): 1d3f3a9

Upload folder using huggingface_hub

Browse files
Files changed (38) hide show
  1. added_tokens.json +13 -0
  2. config.json +138 -0
  3. generation_config.json +11 -0
  4. global_step5300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. global_step5300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. global_step5300/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. global_step5300/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. global_step5300/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. global_step5300/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. global_step5300/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. global_step5300/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. global_step5300/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. global_step5300/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. global_step5300/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. global_step5300/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. global_step5300/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. global_step5300/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. global_step5300/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. global_step5300/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. latest +1 -0
  21. model-00001-of-00002.safetensors +3 -0
  22. model-00002-of-00002.safetensors +3 -0
  23. model.safetensors.index.json +202 -0
  24. rng_state_0.pth +3 -0
  25. rng_state_1.pth +3 -0
  26. rng_state_2.pth +3 -0
  27. rng_state_3.pth +3 -0
  28. rng_state_4.pth +3 -0
  29. rng_state_5.pth +3 -0
  30. rng_state_6.pth +3 -0
  31. rng_state_7.pth +3 -0
  32. special_tokens_map.json +30 -0
  33. tokenizer.json +0 -0
  34. tokenizer.model +3 -0
  35. tokenizer_config.json +131 -0
  36. trainer_state.json +828 -0
  37. training_args.bin +3 -0
  38. zero_to_fp32.py +592 -0
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
config.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/Phi-3.5-mini-instruct",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "microsoft/Phi-3.5-mini-instruct--configuration_phi3.Phi3Config",
10
+ "AutoModelForCausalLM": "microsoft/Phi-3.5-mini-instruct--modeling_phi3.Phi3ForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "embd_pdrop": 0.0,
14
+ "eos_token_id": 32000,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 3072,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 8192,
19
+ "max_position_embeddings": 131072,
20
+ "model_type": "phi3",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 32,
24
+ "original_max_position_embeddings": 4096,
25
+ "pad_token_id": 32000,
26
+ "resid_pdrop": 0.0,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": {
29
+ "long_factor": [
30
+ 1.0800000429153442,
31
+ 1.1100000143051147,
32
+ 1.1399999856948853,
33
+ 1.340000033378601,
34
+ 1.5899999141693115,
35
+ 1.600000023841858,
36
+ 1.6200000047683716,
37
+ 2.620000123977661,
38
+ 3.2300000190734863,
39
+ 3.2300000190734863,
40
+ 4.789999961853027,
41
+ 7.400000095367432,
42
+ 7.700000286102295,
43
+ 9.09000015258789,
44
+ 12.199999809265137,
45
+ 17.670000076293945,
46
+ 24.46000099182129,
47
+ 28.57000160217285,
48
+ 30.420001983642578,
49
+ 30.840002059936523,
50
+ 32.590003967285156,
51
+ 32.93000411987305,
52
+ 42.320003509521484,
53
+ 44.96000289916992,
54
+ 50.340003967285156,
55
+ 50.45000457763672,
56
+ 57.55000305175781,
57
+ 57.93000411987305,
58
+ 58.21000289916992,
59
+ 60.1400032043457,
60
+ 62.61000442504883,
61
+ 62.62000274658203,
62
+ 62.71000289916992,
63
+ 63.1400032043457,
64
+ 63.1400032043457,
65
+ 63.77000427246094,
66
+ 63.93000411987305,
67
+ 63.96000289916992,
68
+ 63.970001220703125,
69
+ 64.02999877929688,
70
+ 64.06999969482422,
71
+ 64.08000183105469,
72
+ 64.12000274658203,
73
+ 64.41000366210938,
74
+ 64.4800033569336,
75
+ 64.51000213623047,
76
+ 64.52999877929688,
77
+ 64.83999633789062
78
+ ],
79
+ "short_factor": [
80
+ 1.0,
81
+ 1.0199999809265137,
82
+ 1.0299999713897705,
83
+ 1.0299999713897705,
84
+ 1.0499999523162842,
85
+ 1.0499999523162842,
86
+ 1.0499999523162842,
87
+ 1.0499999523162842,
88
+ 1.0499999523162842,
89
+ 1.0699999332427979,
90
+ 1.0999999046325684,
91
+ 1.1099998950958252,
92
+ 1.1599998474121094,
93
+ 1.1599998474121094,
94
+ 1.1699998378753662,
95
+ 1.2899998426437378,
96
+ 1.339999794960022,
97
+ 1.679999828338623,
98
+ 1.7899998426437378,
99
+ 1.8199998140335083,
100
+ 1.8499997854232788,
101
+ 1.8799997568130493,
102
+ 1.9099997282028198,
103
+ 1.9399996995925903,
104
+ 1.9899996519088745,
105
+ 2.0199997425079346,
106
+ 2.0199997425079346,
107
+ 2.0199997425079346,
108
+ 2.0199997425079346,
109
+ 2.0199997425079346,
110
+ 2.0199997425079346,
111
+ 2.0299997329711914,
112
+ 2.0299997329711914,
113
+ 2.0299997329711914,
114
+ 2.0299997329711914,
115
+ 2.0299997329711914,
116
+ 2.0299997329711914,
117
+ 2.0299997329711914,
118
+ 2.0299997329711914,
119
+ 2.0299997329711914,
120
+ 2.0799996852874756,
121
+ 2.0899996757507324,
122
+ 2.189999580383301,
123
+ 2.2199995517730713,
124
+ 2.5899994373321533,
125
+ 2.729999542236328,
126
+ 2.749999523162842,
127
+ 2.8399994373321533
128
+ ],
129
+ "type": "longrope"
130
+ },
131
+ "rope_theta": 10000.0,
132
+ "sliding_window": 262144,
133
+ "tie_word_embeddings": false,
134
+ "torch_dtype": "bfloat16",
135
+ "transformers_version": "4.43.0",
136
+ "use_cache": false,
137
+ "vocab_size": 32064
138
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32007,
6
+ 32001,
7
+ 32000
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.43.0"
11
+ }
global_step5300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faef1a24311539d30db55d12f29dd5efb11fa93c9c152ddac4b844b6b4f6e567
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cc4ab5f7a97fcd72c488897553e3a3a27d48b4d0ef76bdf448e09151ce4cf9d
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ce7a6cab5e49c922d231c45807b953091a749fe35f3f5317ebbcaa4651b2df
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b158f45746f6eef76be6e088ab219635b6a41a323636b325b7111d85a7ceb82d
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8436206151a47dab4201eec803abb7951c76af9f961ec249d0e1bec70cb3d3fb
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71dafcefd2df7b214d78633366085c0a97a7edb317c7dc4c06dfd343f74e7a3c
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b376b0911febcd3f461709e46fecca83d667a5d6690d54330e3b44df7300fb
3
+ size 5731623920
global_step5300/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85aa1546e557b299b60def83bf073b4ab62ddd070e326fb85cb3d6743c13026d
3
+ size 5731623920
global_step5300/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ae92015bf64800d09f6df193133b9a8725d59e340f32442aacb6828b8c3278f
3
+ size 109445
global_step5300/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:404d9c8e9fc67c32fbf1badeaf37337bac674fd155b1adb32fb720c35f6bd4d9
3
+ size 109445
global_step5300/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64858182fadc84e5d4726c8fb5e95bc57cbd49f6ab9b9256fe1ac7fd8b4f6fe8
3
+ size 109445
global_step5300/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72371ca04ece39df30e58f0024c96939000049af09559f974159ea21fc8ac10
3
+ size 109445
global_step5300/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7107b53629f602dcae5d29af0dd4400f1adea9fda238a304264c531e589928e0
3
+ size 109445
global_step5300/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebe448e245b317651f2f368e5b2516d633fba95889a7c53913679699cbc4d344
3
+ size 109445
global_step5300/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89be40a5d104566a94c6107b61bf03dcd3f006f8bba37d5a006a64b3901f2f0a
3
+ size 109445
global_step5300/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b994ae34c3b896404541217aca16651f1b0243e334c04f8146a341cf0161759
3
+ size 109445
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5300
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b103b8f056b41aa1ab5dc60c5cb614c9aefd3e2bf322fbe9935a760ab835a23
3
+ size 4972489328
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00e5909dc3348ea95d1c35ab08fb281dee667c1ee7d8441039d932381513eb5d
3
+ size 2669692552
model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7642159104
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.norm.weight": "model-00002-of-00002.safetensors"
201
+ }
202
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3624bcbf3b2b80eb48fc69b2a097502aab1a6fc1ade816c01bc4bc97e8f71dbf
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3e4827c63b744e87a5cec7b9a6843237a006fa8952bdbe029824f038c45be8
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98255e3c6a0a64a839ed2630289688899472cf9462ec6c38881e3b157ea5db9a
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c0fd1771075ebb94c7d7c3a275c21e327f2c42fc8e2048e9f6d647045e92fb
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2261a70c95b0f831d329a0371c347336b1cc6c49bc51dd39536786cfb83c0efe
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bce16ded967463fccf3716a13e55f084cd48e215a035683d634bed5a4d7aea3d
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16d4865060de2a0d3e7e14fdf5aebf32c329573574fba9930819564a2c807632
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ffd58f2d675ad36d489e78e8761cba065070485cadfe0055277898459cc72d
3
+ size 15984
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|endoftext|>",
123
+ "legacy": false,
124
+ "model_max_length": 131072,
125
+ "pad_token": "<|endoftext|>",
126
+ "padding_side": "left",
127
+ "sp_model_kwargs": {},
128
+ "tokenizer_class": "LlamaTokenizer",
129
+ "unk_token": "<unk>",
130
+ "use_default_system_prompt": false
131
+ }
trainer_state.json ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 100,
6
+ "global_step": 5300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.18867924528301888,
13
+ "grad_norm": 4.437798503453146,
14
+ "learning_rate": 7.341400415124174e-07,
15
+ "loss": 5.3755,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.18867924528301888,
20
+ "eval_loss": 1.0850828886032104,
21
+ "eval_runtime": 149.7427,
22
+ "eval_samples_per_second": 452.857,
23
+ "eval_steps_per_second": 0.888,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.37735849056603776,
28
+ "grad_norm": 1.6459101244560304,
29
+ "learning_rate": 8.446391282690362e-07,
30
+ "loss": 0.9681,
31
+ "step": 200
32
+ },
33
+ {
34
+ "epoch": 0.37735849056603776,
35
+ "eval_loss": 0.9421371817588806,
36
+ "eval_runtime": 149.748,
37
+ "eval_samples_per_second": 452.841,
38
+ "eval_steps_per_second": 0.888,
39
+ "step": 200
40
+ },
41
+ {
42
+ "epoch": 0.5660377358490566,
43
+ "grad_norm": 4.060133963944513,
44
+ "learning_rate": 9.09276950385592e-07,
45
+ "loss": 0.9538,
46
+ "step": 300
47
+ },
48
+ {
49
+ "epoch": 0.5660377358490566,
50
+ "eval_loss": 0.9655478596687317,
51
+ "eval_runtime": 149.5973,
52
+ "eval_samples_per_second": 453.297,
53
+ "eval_steps_per_second": 0.889,
54
+ "step": 300
55
+ },
56
+ {
57
+ "epoch": 0.7547169811320755,
58
+ "grad_norm": 41.89172794379802,
59
+ "learning_rate": 9.551382150256551e-07,
60
+ "loss": 0.9761,
61
+ "step": 400
62
+ },
63
+ {
64
+ "epoch": 0.7547169811320755,
65
+ "eval_loss": 0.976280152797699,
66
+ "eval_runtime": 149.6311,
67
+ "eval_samples_per_second": 453.195,
68
+ "eval_steps_per_second": 0.889,
69
+ "step": 400
70
+ },
71
+ {
72
+ "epoch": 0.9433962264150944,
73
+ "grad_norm": 70.58972777939259,
74
+ "learning_rate": 9.907109755120069e-07,
75
+ "loss": 0.9786,
76
+ "step": 500
77
+ },
78
+ {
79
+ "epoch": 0.9433962264150944,
80
+ "eval_loss": 0.9799396991729736,
81
+ "eval_runtime": 149.6428,
82
+ "eval_samples_per_second": 453.159,
83
+ "eval_steps_per_second": 0.889,
84
+ "step": 500
85
+ },
86
+ {
87
+ "epoch": 1.1320754716981132,
88
+ "grad_norm": 154.52662720587995,
89
+ "learning_rate": 1e-06,
90
+ "loss": 0.9851,
91
+ "step": 600
92
+ },
93
+ {
94
+ "epoch": 1.1320754716981132,
95
+ "eval_loss": 0.9846892952919006,
96
+ "eval_runtime": 150.8433,
97
+ "eval_samples_per_second": 449.553,
98
+ "eval_steps_per_second": 0.882,
99
+ "step": 600
100
+ },
101
+ {
102
+ "epoch": 1.320754716981132,
103
+ "grad_norm": 147.98867672055184,
104
+ "learning_rate": 1e-06,
105
+ "loss": 0.9876,
106
+ "step": 700
107
+ },
108
+ {
109
+ "epoch": 1.320754716981132,
110
+ "eval_loss": 0.9889557957649231,
111
+ "eval_runtime": 149.6471,
112
+ "eval_samples_per_second": 453.146,
113
+ "eval_steps_per_second": 0.889,
114
+ "step": 700
115
+ },
116
+ {
117
+ "epoch": 1.509433962264151,
118
+ "grad_norm": 93.50922205523368,
119
+ "learning_rate": 1e-06,
120
+ "loss": 0.9892,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 1.509433962264151,
125
+ "eval_loss": 0.9961430430412292,
126
+ "eval_runtime": 149.7573,
127
+ "eval_samples_per_second": 452.813,
128
+ "eval_steps_per_second": 0.888,
129
+ "step": 800
130
+ },
131
+ {
132
+ "epoch": 1.6981132075471699,
133
+ "grad_norm": 53.06237347231676,
134
+ "learning_rate": 1e-06,
135
+ "loss": 0.9983,
136
+ "step": 900
137
+ },
138
+ {
139
+ "epoch": 1.6981132075471699,
140
+ "eval_loss": 1.0119000673294067,
141
+ "eval_runtime": 149.7765,
142
+ "eval_samples_per_second": 452.755,
143
+ "eval_steps_per_second": 0.888,
144
+ "step": 900
145
+ },
146
+ {
147
+ "epoch": 1.8867924528301887,
148
+ "grad_norm": 65.28104430915417,
149
+ "learning_rate": 1e-06,
150
+ "loss": 1.0228,
151
+ "step": 1000
152
+ },
153
+ {
154
+ "epoch": 1.8867924528301887,
155
+ "eval_loss": 1.027756690979004,
156
+ "eval_runtime": 149.4845,
157
+ "eval_samples_per_second": 453.639,
158
+ "eval_steps_per_second": 0.89,
159
+ "step": 1000
160
+ },
161
+ {
162
+ "epoch": 2.0754716981132075,
163
+ "grad_norm": 84.50132037152585,
164
+ "learning_rate": 1e-06,
165
+ "loss": 1.0433,
166
+ "step": 1100
167
+ },
168
+ {
169
+ "epoch": 2.0754716981132075,
170
+ "eval_loss": 1.059239149093628,
171
+ "eval_runtime": 149.7269,
172
+ "eval_samples_per_second": 452.905,
173
+ "eval_steps_per_second": 0.888,
174
+ "step": 1100
175
+ },
176
+ {
177
+ "epoch": 2.2641509433962264,
178
+ "grad_norm": 29.00236133301261,
179
+ "learning_rate": 1e-06,
180
+ "loss": 1.0644,
181
+ "step": 1200
182
+ },
183
+ {
184
+ "epoch": 2.2641509433962264,
185
+ "eval_loss": 1.0800738334655762,
186
+ "eval_runtime": 149.9162,
187
+ "eval_samples_per_second": 452.333,
188
+ "eval_steps_per_second": 0.887,
189
+ "step": 1200
190
+ },
191
+ {
192
+ "epoch": 2.452830188679245,
193
+ "grad_norm": 411.7064146634104,
194
+ "learning_rate": 1e-06,
195
+ "loss": 1.0917,
196
+ "step": 1300
197
+ },
198
+ {
199
+ "epoch": 2.452830188679245,
200
+ "eval_loss": 1.1134124994277954,
201
+ "eval_runtime": 149.7734,
202
+ "eval_samples_per_second": 452.764,
203
+ "eval_steps_per_second": 0.888,
204
+ "step": 1300
205
+ },
206
+ {
207
+ "epoch": 2.641509433962264,
208
+ "grad_norm": 229.88146571929195,
209
+ "learning_rate": 1e-06,
210
+ "loss": 1.1147,
211
+ "step": 1400
212
+ },
213
+ {
214
+ "epoch": 2.641509433962264,
215
+ "eval_loss": 1.1160598993301392,
216
+ "eval_runtime": 149.7257,
217
+ "eval_samples_per_second": 452.908,
218
+ "eval_steps_per_second": 0.888,
219
+ "step": 1400
220
+ },
221
+ {
222
+ "epoch": 2.830188679245283,
223
+ "grad_norm": 7.414451982821549,
224
+ "learning_rate": 1e-06,
225
+ "loss": 1.1581,
226
+ "step": 1500
227
+ },
228
+ {
229
+ "epoch": 2.830188679245283,
230
+ "eval_loss": 1.2751212120056152,
231
+ "eval_runtime": 149.6311,
232
+ "eval_samples_per_second": 453.195,
233
+ "eval_steps_per_second": 0.889,
234
+ "step": 1500
235
+ },
236
+ {
237
+ "epoch": 3.018867924528302,
238
+ "grad_norm": 51.75196724068806,
239
+ "learning_rate": 1e-06,
240
+ "loss": 1.4543,
241
+ "step": 1600
242
+ },
243
+ {
244
+ "epoch": 3.018867924528302,
245
+ "eval_loss": 1.5799795389175415,
246
+ "eval_runtime": 149.5252,
247
+ "eval_samples_per_second": 453.516,
248
+ "eval_steps_per_second": 0.889,
249
+ "step": 1600
250
+ },
251
+ {
252
+ "epoch": 3.207547169811321,
253
+ "grad_norm": 8.197678623516119,
254
+ "learning_rate": 1e-06,
255
+ "loss": 1.6332,
256
+ "step": 1700
257
+ },
258
+ {
259
+ "epoch": 3.207547169811321,
260
+ "eval_loss": 1.7048678398132324,
261
+ "eval_runtime": 149.7414,
262
+ "eval_samples_per_second": 452.861,
263
+ "eval_steps_per_second": 0.888,
264
+ "step": 1700
265
+ },
266
+ {
267
+ "epoch": 3.3962264150943398,
268
+ "grad_norm": 9.609718378646408,
269
+ "learning_rate": 1e-06,
270
+ "loss": 1.7915,
271
+ "step": 1800
272
+ },
273
+ {
274
+ "epoch": 3.3962264150943398,
275
+ "eval_loss": 1.8891370296478271,
276
+ "eval_runtime": 149.8519,
277
+ "eval_samples_per_second": 452.527,
278
+ "eval_steps_per_second": 0.888,
279
+ "step": 1800
280
+ },
281
+ {
282
+ "epoch": 3.5849056603773586,
283
+ "grad_norm": 87.68727169428583,
284
+ "learning_rate": 1e-06,
285
+ "loss": 1.9812,
286
+ "step": 1900
287
+ },
288
+ {
289
+ "epoch": 3.5849056603773586,
290
+ "eval_loss": 2.057527780532837,
291
+ "eval_runtime": 149.7699,
292
+ "eval_samples_per_second": 452.774,
293
+ "eval_steps_per_second": 0.888,
294
+ "step": 1900
295
+ },
296
+ {
297
+ "epoch": 3.7735849056603774,
298
+ "grad_norm": 12.995456781993322,
299
+ "learning_rate": 1e-06,
300
+ "loss": 2.0982,
301
+ "step": 2000
302
+ },
303
+ {
304
+ "epoch": 3.7735849056603774,
305
+ "eval_loss": 2.1332101821899414,
306
+ "eval_runtime": 149.6771,
307
+ "eval_samples_per_second": 453.055,
308
+ "eval_steps_per_second": 0.889,
309
+ "step": 2000
310
+ },
311
+ {
312
+ "epoch": 3.9622641509433962,
313
+ "grad_norm": 13.605685201407708,
314
+ "learning_rate": 1e-06,
315
+ "loss": 2.1784,
316
+ "step": 2100
317
+ },
318
+ {
319
+ "epoch": 3.9622641509433962,
320
+ "eval_loss": 2.2318856716156006,
321
+ "eval_runtime": 149.8102,
322
+ "eval_samples_per_second": 452.653,
323
+ "eval_steps_per_second": 0.888,
324
+ "step": 2100
325
+ },
326
+ {
327
+ "epoch": 4.150943396226415,
328
+ "grad_norm": 12.732750088048045,
329
+ "learning_rate": 1e-06,
330
+ "loss": 2.2661,
331
+ "step": 2200
332
+ },
333
+ {
334
+ "epoch": 4.150943396226415,
335
+ "eval_loss": 2.3092291355133057,
336
+ "eval_runtime": 149.6232,
337
+ "eval_samples_per_second": 453.219,
338
+ "eval_steps_per_second": 0.889,
339
+ "step": 2200
340
+ },
341
+ {
342
+ "epoch": 4.339622641509434,
343
+ "grad_norm": 13.451602224902139,
344
+ "learning_rate": 1e-06,
345
+ "loss": 2.3259,
346
+ "step": 2300
347
+ },
348
+ {
349
+ "epoch": 4.339622641509434,
350
+ "eval_loss": 2.3665931224823,
351
+ "eval_runtime": 149.8265,
352
+ "eval_samples_per_second": 452.604,
353
+ "eval_steps_per_second": 0.888,
354
+ "step": 2300
355
+ },
356
+ {
357
+ "epoch": 4.528301886792453,
358
+ "grad_norm": 13.331046925646502,
359
+ "learning_rate": 1e-06,
360
+ "loss": 2.3908,
361
+ "step": 2400
362
+ },
363
+ {
364
+ "epoch": 4.528301886792453,
365
+ "eval_loss": 2.4305644035339355,
366
+ "eval_runtime": 149.9235,
367
+ "eval_samples_per_second": 452.311,
368
+ "eval_steps_per_second": 0.887,
369
+ "step": 2400
370
+ },
371
+ {
372
+ "epoch": 4.716981132075472,
373
+ "grad_norm": 17.21909294548451,
374
+ "learning_rate": 1e-06,
375
+ "loss": 2.4521,
376
+ "step": 2500
377
+ },
378
+ {
379
+ "epoch": 4.716981132075472,
380
+ "eval_loss": 2.545186758041382,
381
+ "eval_runtime": 149.7293,
382
+ "eval_samples_per_second": 452.897,
383
+ "eval_steps_per_second": 0.888,
384
+ "step": 2500
385
+ },
386
+ {
387
+ "epoch": 4.90566037735849,
388
+ "grad_norm": 16.704993975768705,
389
+ "learning_rate": 1e-06,
390
+ "loss": 2.5541,
391
+ "step": 2600
392
+ },
393
+ {
394
+ "epoch": 4.90566037735849,
395
+ "eval_loss": 2.6449944972991943,
396
+ "eval_runtime": 149.6085,
397
+ "eval_samples_per_second": 453.263,
398
+ "eval_steps_per_second": 0.889,
399
+ "step": 2600
400
+ },
401
+ {
402
+ "epoch": 5.09433962264151,
403
+ "grad_norm": 17.23044971023092,
404
+ "learning_rate": 1e-06,
405
+ "loss": 2.7022,
406
+ "step": 2700
407
+ },
408
+ {
409
+ "epoch": 5.09433962264151,
410
+ "eval_loss": 2.7793149948120117,
411
+ "eval_runtime": 149.7512,
412
+ "eval_samples_per_second": 452.831,
413
+ "eval_steps_per_second": 0.888,
414
+ "step": 2700
415
+ },
416
+ {
417
+ "epoch": 5.283018867924528,
418
+ "grad_norm": 17.47208816215434,
419
+ "learning_rate": 1e-06,
420
+ "loss": 2.8302,
421
+ "step": 2800
422
+ },
423
+ {
424
+ "epoch": 5.283018867924528,
425
+ "eval_loss": 2.888209581375122,
426
+ "eval_runtime": 149.8872,
427
+ "eval_samples_per_second": 452.42,
428
+ "eval_steps_per_second": 0.887,
429
+ "step": 2800
430
+ },
431
+ {
432
+ "epoch": 5.471698113207547,
433
+ "grad_norm": 17.705909664870283,
434
+ "learning_rate": 1e-06,
435
+ "loss": 2.9344,
436
+ "step": 2900
437
+ },
438
+ {
439
+ "epoch": 5.471698113207547,
440
+ "eval_loss": 2.9951322078704834,
441
+ "eval_runtime": 149.9777,
442
+ "eval_samples_per_second": 452.147,
443
+ "eval_steps_per_second": 0.887,
444
+ "step": 2900
445
+ },
446
+ {
447
+ "epoch": 5.660377358490566,
448
+ "grad_norm": 19.101859660265248,
449
+ "learning_rate": 1e-06,
450
+ "loss": 3.0392,
451
+ "step": 3000
452
+ },
453
+ {
454
+ "epoch": 5.660377358490566,
455
+ "eval_loss": 3.0882513523101807,
456
+ "eval_runtime": 149.9153,
457
+ "eval_samples_per_second": 452.335,
458
+ "eval_steps_per_second": 0.887,
459
+ "step": 3000
460
+ },
461
+ {
462
+ "epoch": 5.849056603773585,
463
+ "grad_norm": 19.07389675964658,
464
+ "learning_rate": 1e-06,
465
+ "loss": 3.0997,
466
+ "step": 3100
467
+ },
468
+ {
469
+ "epoch": 5.849056603773585,
470
+ "eval_loss": 3.1218082904815674,
471
+ "eval_runtime": 149.7905,
472
+ "eval_samples_per_second": 452.712,
473
+ "eval_steps_per_second": 0.888,
474
+ "step": 3100
475
+ },
476
+ {
477
+ "epoch": 6.037735849056604,
478
+ "grad_norm": 18.92461175759707,
479
+ "learning_rate": 1e-06,
480
+ "loss": 3.1321,
481
+ "step": 3200
482
+ },
483
+ {
484
+ "epoch": 6.037735849056604,
485
+ "eval_loss": 3.153890609741211,
486
+ "eval_runtime": 149.8617,
487
+ "eval_samples_per_second": 452.497,
488
+ "eval_steps_per_second": 0.887,
489
+ "step": 3200
490
+ },
491
+ {
492
+ "epoch": 6.226415094339623,
493
+ "grad_norm": 20.348062318970786,
494
+ "learning_rate": 1e-06,
495
+ "loss": 3.1567,
496
+ "step": 3300
497
+ },
498
+ {
499
+ "epoch": 6.226415094339623,
500
+ "eval_loss": 3.180058240890503,
501
+ "eval_runtime": 149.6522,
502
+ "eval_samples_per_second": 453.131,
503
+ "eval_steps_per_second": 0.889,
504
+ "step": 3300
505
+ },
506
+ {
507
+ "epoch": 6.415094339622642,
508
+ "grad_norm": 19.380403417398043,
509
+ "learning_rate": 1e-06,
510
+ "loss": 3.1885,
511
+ "step": 3400
512
+ },
513
+ {
514
+ "epoch": 6.415094339622642,
515
+ "eval_loss": 3.2085678577423096,
516
+ "eval_runtime": 149.9193,
517
+ "eval_samples_per_second": 452.323,
518
+ "eval_steps_per_second": 0.887,
519
+ "step": 3400
520
+ },
521
+ {
522
+ "epoch": 6.60377358490566,
523
+ "grad_norm": 19.172157540450666,
524
+ "learning_rate": 1e-06,
525
+ "loss": 3.2066,
526
+ "step": 3500
527
+ },
528
+ {
529
+ "epoch": 6.60377358490566,
530
+ "eval_loss": 3.2430124282836914,
531
+ "eval_runtime": 149.5804,
532
+ "eval_samples_per_second": 453.348,
533
+ "eval_steps_per_second": 0.889,
534
+ "step": 3500
535
+ },
536
+ {
537
+ "epoch": 6.7924528301886795,
538
+ "grad_norm": 20.834808216022473,
539
+ "learning_rate": 1e-06,
540
+ "loss": 3.2529,
541
+ "step": 3600
542
+ },
543
+ {
544
+ "epoch": 6.7924528301886795,
545
+ "eval_loss": 3.2701263427734375,
546
+ "eval_runtime": 149.8287,
547
+ "eval_samples_per_second": 452.597,
548
+ "eval_steps_per_second": 0.888,
549
+ "step": 3600
550
+ },
551
+ {
552
+ "epoch": 6.981132075471698,
553
+ "grad_norm": 20.71072973537811,
554
+ "learning_rate": 1e-06,
555
+ "loss": 3.2788,
556
+ "step": 3700
557
+ },
558
+ {
559
+ "epoch": 6.981132075471698,
560
+ "eval_loss": 3.3030686378479004,
561
+ "eval_runtime": 149.8206,
562
+ "eval_samples_per_second": 452.621,
563
+ "eval_steps_per_second": 0.888,
564
+ "step": 3700
565
+ },
566
+ {
567
+ "epoch": 7.169811320754717,
568
+ "grad_norm": 20.550695492004113,
569
+ "learning_rate": 1e-06,
570
+ "loss": 3.3094,
571
+ "step": 3800
572
+ },
573
+ {
574
+ "epoch": 7.169811320754717,
575
+ "eval_loss": 3.3228628635406494,
576
+ "eval_runtime": 149.8243,
577
+ "eval_samples_per_second": 452.61,
578
+ "eval_steps_per_second": 0.888,
579
+ "step": 3800
580
+ },
581
+ {
582
+ "epoch": 7.3584905660377355,
583
+ "grad_norm": 22.750882645137363,
584
+ "learning_rate": 1e-06,
585
+ "loss": 3.3288,
586
+ "step": 3900
587
+ },
588
+ {
589
+ "epoch": 7.3584905660377355,
590
+ "eval_loss": 3.355827808380127,
591
+ "eval_runtime": 149.6529,
592
+ "eval_samples_per_second": 453.129,
593
+ "eval_steps_per_second": 0.889,
594
+ "step": 3900
595
+ },
596
+ {
597
+ "epoch": 7.547169811320755,
598
+ "grad_norm": 21.426519401026805,
599
+ "learning_rate": 1e-06,
600
+ "loss": 3.3727,
601
+ "step": 4000
602
+ },
603
+ {
604
+ "epoch": 7.547169811320755,
605
+ "eval_loss": 3.3865537643432617,
606
+ "eval_runtime": 150.2322,
607
+ "eval_samples_per_second": 451.381,
608
+ "eval_steps_per_second": 0.885,
609
+ "step": 4000
610
+ },
611
+ {
612
+ "epoch": 7.735849056603773,
613
+ "grad_norm": 21.858010980941717,
614
+ "learning_rate": 1e-06,
615
+ "loss": 3.3938,
616
+ "step": 4100
617
+ },
618
+ {
619
+ "epoch": 7.735849056603773,
620
+ "eval_loss": 3.4126923084259033,
621
+ "eval_runtime": 149.7102,
622
+ "eval_samples_per_second": 452.955,
623
+ "eval_steps_per_second": 0.888,
624
+ "step": 4100
625
+ },
626
+ {
627
+ "epoch": 7.9245283018867925,
628
+ "grad_norm": 21.32876029273619,
629
+ "learning_rate": 1e-06,
630
+ "loss": 3.4334,
631
+ "step": 4200
632
+ },
633
+ {
634
+ "epoch": 7.9245283018867925,
635
+ "eval_loss": 3.4582273960113525,
636
+ "eval_runtime": 149.6771,
637
+ "eval_samples_per_second": 453.055,
638
+ "eval_steps_per_second": 0.889,
639
+ "step": 4200
640
+ },
641
+ {
642
+ "epoch": 8.11320754716981,
643
+ "grad_norm": 23.89601752008716,
644
+ "learning_rate": 1e-06,
645
+ "loss": 3.4769,
646
+ "step": 4300
647
+ },
648
+ {
649
+ "epoch": 8.11320754716981,
650
+ "eval_loss": 3.505073308944702,
651
+ "eval_runtime": 149.8114,
652
+ "eval_samples_per_second": 452.649,
653
+ "eval_steps_per_second": 0.888,
654
+ "step": 4300
655
+ },
656
+ {
657
+ "epoch": 8.30188679245283,
658
+ "grad_norm": 22.427822055394444,
659
+ "learning_rate": 1e-06,
660
+ "loss": 3.5019,
661
+ "step": 4400
662
+ },
663
+ {
664
+ "epoch": 8.30188679245283,
665
+ "eval_loss": 3.5005218982696533,
666
+ "eval_runtime": 149.7083,
667
+ "eval_samples_per_second": 452.961,
668
+ "eval_steps_per_second": 0.888,
669
+ "step": 4400
670
+ },
671
+ {
672
+ "epoch": 8.49056603773585,
673
+ "grad_norm": 20.122035975196678,
674
+ "learning_rate": 1e-06,
675
+ "loss": 3.4841,
676
+ "step": 4500
677
+ },
678
+ {
679
+ "epoch": 8.49056603773585,
680
+ "eval_loss": 3.4907851219177246,
681
+ "eval_runtime": 149.5966,
682
+ "eval_samples_per_second": 453.299,
683
+ "eval_steps_per_second": 0.889,
684
+ "step": 4500
685
+ },
686
+ {
687
+ "epoch": 8.679245283018869,
688
+ "grad_norm": 7.060014135330357,
689
+ "learning_rate": 1e-06,
690
+ "loss": 3.4805,
691
+ "step": 4600
692
+ },
693
+ {
694
+ "epoch": 8.679245283018869,
695
+ "eval_loss": 3.2945797443389893,
696
+ "eval_runtime": 149.8934,
697
+ "eval_samples_per_second": 452.402,
698
+ "eval_steps_per_second": 0.887,
699
+ "step": 4600
700
+ },
701
+ {
702
+ "epoch": 8.867924528301886,
703
+ "grad_norm": 17.493433128940666,
704
+ "learning_rate": 1e-06,
705
+ "loss": 3.332,
706
+ "step": 4700
707
+ },
708
+ {
709
+ "epoch": 8.867924528301886,
710
+ "eval_loss": 3.3459222316741943,
711
+ "eval_runtime": 149.8771,
712
+ "eval_samples_per_second": 452.451,
713
+ "eval_steps_per_second": 0.887,
714
+ "step": 4700
715
+ },
716
+ {
717
+ "epoch": 9.056603773584905,
718
+ "grad_norm": 24.996170360974173,
719
+ "learning_rate": 1e-06,
720
+ "loss": 3.3797,
721
+ "step": 4800
722
+ },
723
+ {
724
+ "epoch": 9.056603773584905,
725
+ "eval_loss": 3.4055655002593994,
726
+ "eval_runtime": 149.7316,
727
+ "eval_samples_per_second": 452.89,
728
+ "eval_steps_per_second": 0.888,
729
+ "step": 4800
730
+ },
731
+ {
732
+ "epoch": 9.245283018867925,
733
+ "grad_norm": 215.6769864867367,
734
+ "learning_rate": 1e-06,
735
+ "loss": 3.4551,
736
+ "step": 4900
737
+ },
738
+ {
739
+ "epoch": 9.245283018867925,
740
+ "eval_loss": 3.5277042388916016,
741
+ "eval_runtime": 149.7551,
742
+ "eval_samples_per_second": 452.819,
743
+ "eval_steps_per_second": 0.888,
744
+ "step": 4900
745
+ },
746
+ {
747
+ "epoch": 9.433962264150944,
748
+ "grad_norm": 329.1368446406449,
749
+ "learning_rate": 1e-06,
750
+ "loss": 3.4127,
751
+ "step": 5000
752
+ },
753
+ {
754
+ "epoch": 9.433962264150944,
755
+ "eval_loss": 3.399594783782959,
756
+ "eval_runtime": 150.0027,
757
+ "eval_samples_per_second": 452.072,
758
+ "eval_steps_per_second": 0.887,
759
+ "step": 5000
760
+ },
761
+ {
762
+ "epoch": 9.622641509433961,
763
+ "grad_norm": 189.47715891368014,
764
+ "learning_rate": 1e-06,
765
+ "loss": 3.5646,
766
+ "step": 5100
767
+ },
768
+ {
769
+ "epoch": 9.622641509433961,
770
+ "eval_loss": 3.6223909854888916,
771
+ "eval_runtime": 149.6317,
772
+ "eval_samples_per_second": 453.193,
773
+ "eval_steps_per_second": 0.889,
774
+ "step": 5100
775
+ },
776
+ {
777
+ "epoch": 9.81132075471698,
778
+ "grad_norm": 154.57704389721005,
779
+ "learning_rate": 1e-06,
780
+ "loss": 3.6037,
781
+ "step": 5200
782
+ },
783
+ {
784
+ "epoch": 9.81132075471698,
785
+ "eval_loss": 3.698052406311035,
786
+ "eval_runtime": 149.5975,
787
+ "eval_samples_per_second": 453.296,
788
+ "eval_steps_per_second": 0.889,
789
+ "step": 5200
790
+ },
791
+ {
792
+ "epoch": 10.0,
793
+ "grad_norm": 201.5213039296342,
794
+ "learning_rate": 1e-06,
795
+ "loss": 3.698,
796
+ "step": 5300
797
+ },
798
+ {
799
+ "epoch": 10.0,
800
+ "eval_loss": 3.721698522567749,
801
+ "eval_runtime": 149.7798,
802
+ "eval_samples_per_second": 452.745,
803
+ "eval_steps_per_second": 0.888,
804
+ "step": 5300
805
+ }
806
+ ],
807
+ "logging_steps": 100,
808
+ "max_steps": 5300,
809
+ "num_input_tokens_seen": 0,
810
+ "num_train_epochs": 10,
811
+ "save_steps": 500,
812
+ "stateful_callbacks": {
813
+ "TrainerControl": {
814
+ "args": {
815
+ "should_epoch_stop": false,
816
+ "should_evaluate": false,
817
+ "should_log": false,
818
+ "should_save": true,
819
+ "should_training_stop": true
820
+ },
821
+ "attributes": {}
822
+ }
823
+ },
824
+ "total_flos": 1664568262656000.0,
825
+ "train_batch_size": 64,
826
+ "trial_name": null,
827
+ "trial_params": null
828
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5854041825d4e3c49b0fe41047ce3abdea7df279bd9d55b5e7da360624c358ca
3
+ size 7608
zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)