Build
Browse files- build/torch-universal/triton_layer_norm/__init__.py +3 -0
- build/torch-universal/triton_layer_norm/_ops.py +2 -2
- build/torch-universal/triton_layer_norm/layer_norm.py +338 -244
- build/torch-universal/triton_layer_norm/utils/__init__.py +0 -0
- build/torch-universal/triton_layer_norm/utils/library.py +66 -0
- build/torch-universal/triton_layer_norm/utils/torch.py +21 -0
build/torch-universal/triton_layer_norm/__init__.py
CHANGED
|
@@ -25,6 +25,7 @@ def layer_norm(
|
|
| 25 |
rowscale=None,
|
| 26 |
prenorm: bool = False,
|
| 27 |
residual_in_fp32: bool = False,
|
|
|
|
| 28 |
is_rms_norm: bool = False,
|
| 29 |
return_dropout_mask: bool = False,
|
| 30 |
out: Optional[torch.Tensor] = None,
|
|
@@ -61,6 +62,8 @@ def layer_norm(
|
|
| 61 |
If True, returns both the normalized output and the unnormalized input+residual.
|
| 62 |
residual_in_fp32 (`bool`, *optional*, defaults to False):
|
| 63 |
If True, performs the residual connection in FP32 precision.
|
|
|
|
|
|
|
| 64 |
is_rms_norm (`bool`, *optional*, defaults to False):
|
| 65 |
If True, uses RMS normalization instead of layer normalization.
|
| 66 |
return_dropout_mask (`bool`, *optional*, defaults to False):
|
|
|
|
| 25 |
rowscale=None,
|
| 26 |
prenorm: bool = False,
|
| 27 |
residual_in_fp32: bool = False,
|
| 28 |
+
zero_centered_weight: bool = False,
|
| 29 |
is_rms_norm: bool = False,
|
| 30 |
return_dropout_mask: bool = False,
|
| 31 |
out: Optional[torch.Tensor] = None,
|
|
|
|
| 62 |
If True, returns both the normalized output and the unnormalized input+residual.
|
| 63 |
residual_in_fp32 (`bool`, *optional*, defaults to False):
|
| 64 |
If True, performs the residual connection in FP32 precision.
|
| 65 |
+
zero_centered_weight (`bool`, *optional*, defaults to False):
|
| 66 |
+
When set to true, 1.0 is added to the weight before applying it.
|
| 67 |
is_rms_norm (`bool`, *optional*, defaults to False):
|
| 68 |
If True, uses RMS normalization instead of layer normalization.
|
| 69 |
return_dropout_mask (`bool`, *optional*, defaults to False):
|
build/torch-universal/triton_layer_norm/_ops.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
-
ops = torch.ops.
|
| 3 |
|
| 4 |
def add_op_namespace_prefix(op_name: str):
|
| 5 |
"""
|
| 6 |
Prefix op by namespace.
|
| 7 |
"""
|
| 8 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
ops = torch.ops._triton_layer_norm_9b61b27_dirty
|
| 3 |
|
| 4 |
def add_op_namespace_prefix(op_name: str):
|
| 5 |
"""
|
| 6 |
Prefix op by namespace.
|
| 7 |
"""
|
| 8 |
+
return f"_triton_layer_norm_9b61b27_dirty::{op_name}"
|
build/torch-universal/triton_layer_norm/layer_norm.py
CHANGED
|
@@ -7,14 +7,40 @@
|
|
| 7 |
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
| 8 |
|
| 9 |
import math
|
|
|
|
| 10 |
|
| 11 |
import torch
|
| 12 |
import torch.nn.functional as F
|
| 13 |
-
from torch
|
| 14 |
|
| 15 |
import triton
|
| 16 |
import triton.language as tl
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def layer_norm_ref(
|
| 20 |
x,
|
|
@@ -28,6 +54,7 @@ def layer_norm_ref(
|
|
| 28 |
dropout_p=0.0,
|
| 29 |
rowscale=None,
|
| 30 |
prenorm=False,
|
|
|
|
| 31 |
dropout_mask=None,
|
| 32 |
dropout_mask1=None,
|
| 33 |
upcast=False,
|
|
@@ -41,6 +68,10 @@ def layer_norm_ref(
|
|
| 41 |
x1 = x1.float() if x1 is not None else None
|
| 42 |
weight1 = weight1.float() if weight1 is not None else None
|
| 43 |
bias1 = bias1.float() if bias1 is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
if x1 is not None:
|
| 45 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 46 |
if rowscale is not None:
|
|
@@ -59,9 +90,9 @@ def layer_norm_ref(
|
|
| 59 |
x = x + x1
|
| 60 |
if residual is not None:
|
| 61 |
x = (x + residual).to(x.dtype)
|
| 62 |
-
out = F.layer_norm(
|
| 63 |
-
|
| 64 |
-
)
|
| 65 |
if weight1 is None:
|
| 66 |
return out if not prenorm else (out, x)
|
| 67 |
else:
|
|
@@ -83,6 +114,7 @@ def rms_norm_ref(
|
|
| 83 |
dropout_p=0.0,
|
| 84 |
rowscale=None,
|
| 85 |
prenorm=False,
|
|
|
|
| 86 |
dropout_mask=None,
|
| 87 |
dropout_mask1=None,
|
| 88 |
upcast=False,
|
|
@@ -96,6 +128,10 @@ def rms_norm_ref(
|
|
| 96 |
x1 = x1.float() if x1 is not None else None
|
| 97 |
weight1 = weight1.float() if weight1 is not None else None
|
| 98 |
bias1 = bias1.float() if bias1 is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
if x1 is not None:
|
| 100 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 101 |
if rowscale is not None:
|
|
@@ -115,34 +151,26 @@ def rms_norm_ref(
|
|
| 115 |
if residual is not None:
|
| 116 |
x = (x + residual).to(x.dtype)
|
| 117 |
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
| 118 |
-
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(
|
| 119 |
-
dtype
|
| 120 |
-
)
|
| 121 |
if weight1 is None:
|
| 122 |
return out if not prenorm else (out, x)
|
| 123 |
else:
|
| 124 |
-
out1 = (
|
| 125 |
-
|
| 126 |
-
)
|
| 127 |
return (out, out1) if not prenorm else (out, out1, x)
|
| 128 |
|
| 129 |
|
| 130 |
@triton.autotune(
|
| 131 |
-
configs=
|
| 132 |
-
|
| 133 |
-
triton.Config({}, num_warps=2),
|
| 134 |
-
triton.Config({}, num_warps=4),
|
| 135 |
-
triton.Config({}, num_warps=8),
|
| 136 |
-
triton.Config({}, num_warps=16),
|
| 137 |
-
triton.Config({}, num_warps=32),
|
| 138 |
-
],
|
| 139 |
-
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
| 140 |
)
|
|
|
|
| 141 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 142 |
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
| 143 |
-
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
| 144 |
-
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
| 145 |
-
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
| 146 |
@triton.jit
|
| 147 |
def _layer_norm_fwd_1pass_kernel(
|
| 148 |
X, # pointer to the input
|
|
@@ -158,6 +186,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 158 |
ROWSCALE,
|
| 159 |
SEEDS, # Dropout seeds for each row
|
| 160 |
DROPOUT_MASK,
|
|
|
|
| 161 |
Mean, # pointer to the mean
|
| 162 |
Rstd, # pointer to the 1/std
|
| 163 |
stride_x_row, # how much to increase the pointer when moving by 1 row
|
|
@@ -170,6 +199,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 170 |
N, # number of columns in X
|
| 171 |
eps, # epsilon to avoid division by zero
|
| 172 |
dropout_p, # Dropout probability
|
|
|
|
| 173 |
IS_RMS_NORM: tl.constexpr,
|
| 174 |
BLOCK_N: tl.constexpr,
|
| 175 |
HAS_RESIDUAL: tl.constexpr,
|
|
@@ -203,9 +233,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 203 |
if HAS_DROPOUT:
|
| 204 |
# Compute dropout mask
|
| 205 |
# 7 rounds is good enough, and reduces register pressure
|
| 206 |
-
keep_mask = (
|
| 207 |
-
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
| 208 |
-
)
|
| 209 |
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
| 210 |
if STORE_DROPOUT_MASK:
|
| 211 |
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
|
@@ -218,12 +246,11 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 218 |
# Compute dropout mask
|
| 219 |
# 7 rounds is good enough, and reduces register pressure
|
| 220 |
keep_mask = (
|
| 221 |
-
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 222 |
-
> dropout_p
|
| 223 |
)
|
| 224 |
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
| 225 |
if STORE_DROPOUT_MASK:
|
| 226 |
-
tl.store(
|
| 227 |
x += x1
|
| 228 |
if HAS_RESIDUAL:
|
| 229 |
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
|
@@ -243,6 +270,8 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 243 |
# Normalize and apply linear transformation
|
| 244 |
mask = cols < N
|
| 245 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
|
|
|
|
|
| 246 |
if HAS_BIAS:
|
| 247 |
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
| 248 |
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
|
@@ -251,6 +280,8 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 251 |
tl.store(Y + cols, y, mask=mask)
|
| 252 |
if HAS_W1:
|
| 253 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
|
|
|
|
|
|
| 254 |
if HAS_B1:
|
| 255 |
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
| 256 |
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
|
@@ -258,25 +289,87 @@ def _layer_norm_fwd_1pass_kernel(
|
|
| 258 |
|
| 259 |
|
| 260 |
def _layer_norm_fwd(
|
| 261 |
-
x,
|
| 262 |
-
weight,
|
| 263 |
-
bias,
|
| 264 |
-
eps,
|
| 265 |
-
residual=None,
|
| 266 |
-
x1=None,
|
| 267 |
-
weight1=None,
|
| 268 |
-
bias1=None,
|
| 269 |
-
dropout_p=0.0,
|
| 270 |
-
rowscale=None,
|
| 271 |
-
out_dtype=None,
|
| 272 |
-
residual_dtype=None,
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
if residual is not None:
|
| 279 |
residual_dtype = residual.dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
M, N = x.shape
|
| 281 |
assert x.stride(-1) == 1
|
| 282 |
if residual is not None:
|
|
@@ -300,41 +393,17 @@ def _layer_norm_fwd(
|
|
| 300 |
if rowscale is not None:
|
| 301 |
assert rowscale.is_contiguous()
|
| 302 |
assert rowscale.shape == (M,)
|
| 303 |
-
|
| 304 |
-
if out is None:
|
| 305 |
-
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
| 306 |
-
else:
|
| 307 |
-
assert out.shape == x.shape
|
| 308 |
assert out.stride(-1) == 1
|
|
|
|
|
|
|
|
|
|
| 309 |
if weight1 is not None:
|
| 310 |
y1 = torch.empty_like(out)
|
| 311 |
assert y1.stride(-1) == 1
|
| 312 |
else:
|
| 313 |
y1 = None
|
| 314 |
-
if
|
| 315 |
-
residual is not None
|
| 316 |
-
or (residual_dtype is not None and residual_dtype != x.dtype)
|
| 317 |
-
or dropout_p > 0.0
|
| 318 |
-
or rowscale is not None
|
| 319 |
-
or x1 is not None
|
| 320 |
-
):
|
| 321 |
-
if residual_out is None:
|
| 322 |
-
residual_out = torch.empty(
|
| 323 |
-
M,
|
| 324 |
-
N,
|
| 325 |
-
device=x.device,
|
| 326 |
-
dtype=residual_dtype if residual_dtype is not None else x.dtype,
|
| 327 |
-
)
|
| 328 |
-
else:
|
| 329 |
-
assert residual_out.shape == x.shape
|
| 330 |
-
assert residual_out.stride(-1) == 1
|
| 331 |
-
else:
|
| 332 |
-
residual_out = None
|
| 333 |
-
mean = (
|
| 334 |
-
torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 335 |
-
if not is_rms_norm
|
| 336 |
-
else None
|
| 337 |
-
)
|
| 338 |
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 339 |
if dropout_p > 0.0:
|
| 340 |
seeds = torch.randint(
|
|
@@ -343,18 +412,20 @@ def _layer_norm_fwd(
|
|
| 343 |
else:
|
| 344 |
seeds = None
|
| 345 |
if return_dropout_mask and dropout_p > 0.0:
|
| 346 |
-
dropout_mask = torch.empty(
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
| 349 |
else:
|
| 350 |
-
dropout_mask = None
|
| 351 |
# Less than 64KB per feature: enqueue fused kernel
|
| 352 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 353 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 354 |
if N > BLOCK_N:
|
| 355 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 356 |
with torch.cuda.device(x.device.index):
|
| 357 |
-
_layer_norm_fwd_1pass_kernel[(M,)](
|
| 358 |
x,
|
| 359 |
out,
|
| 360 |
weight,
|
|
@@ -368,6 +439,7 @@ def _layer_norm_fwd(
|
|
| 368 |
rowscale,
|
| 369 |
seeds,
|
| 370 |
dropout_mask,
|
|
|
|
| 371 |
mean,
|
| 372 |
rstd,
|
| 373 |
x.stride(0),
|
|
@@ -380,6 +452,8 @@ def _layer_norm_fwd(
|
|
| 380 |
N,
|
| 381 |
eps,
|
| 382 |
dropout_p,
|
|
|
|
|
|
|
| 383 |
is_rms_norm,
|
| 384 |
BLOCK_N,
|
| 385 |
residual is not None,
|
|
@@ -388,50 +462,26 @@ def _layer_norm_fwd(
|
|
| 388 |
dropout_p > 0.0,
|
| 389 |
dropout_mask is not None,
|
| 390 |
rowscale is not None,
|
|
|
|
|
|
|
|
|
|
| 391 |
)
|
| 392 |
-
|
| 393 |
-
if dropout_mask is not None and x1 is not None:
|
| 394 |
-
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
|
| 395 |
-
else:
|
| 396 |
-
dropout_mask1 = None
|
| 397 |
-
return (
|
| 398 |
-
out,
|
| 399 |
-
y1,
|
| 400 |
-
mean,
|
| 401 |
-
rstd,
|
| 402 |
-
residual_out if residual_out is not None else x,
|
| 403 |
-
seeds,
|
| 404 |
-
dropout_mask,
|
| 405 |
-
dropout_mask1,
|
| 406 |
-
)
|
| 407 |
|
| 408 |
|
| 409 |
@triton.autotune(
|
| 410 |
-
configs=
|
| 411 |
-
|
| 412 |
-
triton.Config({}, num_warps=2),
|
| 413 |
-
triton.Config({}, num_warps=4),
|
| 414 |
-
triton.Config({}, num_warps=8),
|
| 415 |
-
triton.Config({}, num_warps=16),
|
| 416 |
-
triton.Config({}, num_warps=32),
|
| 417 |
-
],
|
| 418 |
-
key=[
|
| 419 |
-
"N",
|
| 420 |
-
"HAS_DRESIDUAL",
|
| 421 |
-
"STORE_DRESIDUAL",
|
| 422 |
-
"IS_RMS_NORM",
|
| 423 |
-
"HAS_BIAS",
|
| 424 |
-
"HAS_DROPOUT",
|
| 425 |
-
],
|
| 426 |
)
|
|
|
|
| 427 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 428 |
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
| 429 |
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
| 430 |
-
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
| 431 |
-
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
| 432 |
-
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
| 433 |
-
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
| 434 |
-
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
| 435 |
@triton.jit
|
| 436 |
def _layer_norm_bwd_kernel(
|
| 437 |
X, # pointer to the input
|
|
@@ -465,6 +515,7 @@ def _layer_norm_bwd_kernel(
|
|
| 465 |
N, # number of columns in X
|
| 466 |
eps, # epsilon to avoid division by zero
|
| 467 |
dropout_p,
|
|
|
|
| 468 |
rows_per_program,
|
| 469 |
IS_RMS_NORM: tl.constexpr,
|
| 470 |
BLOCK_N: tl.constexpr,
|
|
@@ -498,10 +549,14 @@ def _layer_norm_bwd_kernel(
|
|
| 498 |
if RECOMPUTE_OUTPUT:
|
| 499 |
Y += row_start * stride_y_row
|
| 500 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
|
|
|
|
|
| 501 |
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
| 502 |
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
| 503 |
if HAS_DY1:
|
| 504 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
|
|
|
|
|
|
| 505 |
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 506 |
if HAS_BIAS:
|
| 507 |
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
@@ -550,18 +605,14 @@ def _layer_norm_bwd_kernel(
|
|
| 550 |
if HAS_DX1:
|
| 551 |
if HAS_DROPOUT:
|
| 552 |
keep_mask = (
|
| 553 |
-
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 554 |
-
> dropout_p
|
| 555 |
)
|
| 556 |
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 557 |
else:
|
| 558 |
dx1 = dx
|
| 559 |
tl.store(DX1 + cols, dx1, mask=mask)
|
| 560 |
if HAS_DROPOUT:
|
| 561 |
-
keep_mask = (
|
| 562 |
-
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7)
|
| 563 |
-
> dropout_p
|
| 564 |
-
)
|
| 565 |
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 566 |
if HAS_ROWSCALE:
|
| 567 |
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
|
@@ -591,31 +642,93 @@ def _layer_norm_bwd_kernel(
|
|
| 591 |
|
| 592 |
|
| 593 |
def _layer_norm_bwd(
|
| 594 |
-
dy,
|
| 595 |
-
x,
|
| 596 |
-
weight,
|
| 597 |
-
bias,
|
| 598 |
-
eps,
|
| 599 |
-
mean,
|
| 600 |
-
rstd,
|
| 601 |
-
dresidual=None,
|
| 602 |
-
dy1=None,
|
| 603 |
-
weight1=None,
|
| 604 |
-
bias1=None,
|
| 605 |
-
seeds=None,
|
| 606 |
-
dropout_p=0.0,
|
| 607 |
-
rowscale=None,
|
| 608 |
-
has_residual=False,
|
| 609 |
-
has_x1=False,
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
M, N = x.shape
|
| 615 |
assert x.stride(-1) == 1
|
|
|
|
| 616 |
assert dy.stride(-1) == 1
|
| 617 |
assert dy.shape == (M, N)
|
| 618 |
if dresidual is not None:
|
|
|
|
| 619 |
assert dresidual.stride(-1) == 1
|
| 620 |
assert dresidual.shape == (M, N)
|
| 621 |
assert weight.shape == (N,)
|
|
@@ -624,6 +737,7 @@ def _layer_norm_bwd(
|
|
| 624 |
assert bias.stride(-1) == 1
|
| 625 |
assert bias.shape == (N,)
|
| 626 |
if dy1 is not None:
|
|
|
|
| 627 |
assert weight1 is not None
|
| 628 |
assert dy1.shape == dy.shape
|
| 629 |
assert dy1.stride(-1) == 1
|
|
@@ -652,22 +766,18 @@ def _layer_norm_bwd(
|
|
| 652 |
else None
|
| 653 |
)
|
| 654 |
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
| 655 |
-
y = (
|
| 656 |
-
torch.empty(M, N, dtype=dy.dtype, device=dy.device)
|
| 657 |
-
if recompute_output
|
| 658 |
-
else None
|
| 659 |
-
)
|
| 660 |
if recompute_output:
|
| 661 |
-
assert
|
| 662 |
-
weight1 is None
|
| 663 |
-
), "recompute_output is not supported with parallel LayerNorm"
|
| 664 |
|
| 665 |
# Less than 64KB per feature: enqueue fused kernel
|
| 666 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 667 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 668 |
if N > BLOCK_N:
|
| 669 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 670 |
-
|
|
|
|
|
|
|
| 671 |
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
| 672 |
_db = (
|
| 673 |
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
|
@@ -679,7 +789,7 @@ def _layer_norm_bwd(
|
|
| 679 |
rows_per_program = math.ceil(M / sm_count)
|
| 680 |
grid = (sm_count,)
|
| 681 |
with torch.cuda.device(x.device.index):
|
| 682 |
-
_layer_norm_bwd_kernel[grid](
|
| 683 |
x,
|
| 684 |
weight,
|
| 685 |
bias,
|
|
@@ -711,6 +821,8 @@ def _layer_norm_bwd(
|
|
| 711 |
N,
|
| 712 |
eps,
|
| 713 |
dropout_p,
|
|
|
|
|
|
|
| 714 |
rows_per_program,
|
| 715 |
is_rms_norm,
|
| 716 |
BLOCK_N,
|
|
@@ -718,24 +830,22 @@ def _layer_norm_bwd(
|
|
| 718 |
dresidual_in is not None,
|
| 719 |
bias is not None,
|
| 720 |
dropout_p > 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 721 |
)
|
| 722 |
dw = _dw.sum(0).to(weight.dtype)
|
| 723 |
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
| 724 |
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
| 725 |
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
| 726 |
-
#
|
| 727 |
-
|
| 728 |
-
dresidual_in = dx
|
| 729 |
-
if has_x1 and dropout_p == 0.0:
|
| 730 |
-
dx1 = dx
|
| 731 |
-
return (
|
| 732 |
-
(dx, dw, db, dresidual_in, dx1, dw1, db1)
|
| 733 |
-
if not recompute_output
|
| 734 |
-
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
|
| 735 |
-
)
|
| 736 |
|
| 737 |
|
| 738 |
class LayerNormFn(torch.autograd.Function):
|
|
|
|
| 739 |
@staticmethod
|
| 740 |
def forward(
|
| 741 |
ctx,
|
|
@@ -751,34 +861,27 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 751 |
rowscale=None,
|
| 752 |
prenorm=False,
|
| 753 |
residual_in_fp32=False,
|
|
|
|
| 754 |
is_rms_norm=False,
|
| 755 |
return_dropout_mask=False,
|
|
|
|
| 756 |
out=None,
|
| 757 |
-
residual_out=None
|
| 758 |
):
|
| 759 |
x_shape_og = x.shape
|
| 760 |
# reshape input data into 2D tensor
|
| 761 |
-
x = x.reshape(-1, x.shape[-1])
|
| 762 |
-
if x.stride(-1) != 1:
|
| 763 |
-
x = x.contiguous()
|
| 764 |
if residual is not None:
|
| 765 |
assert residual.shape == x_shape_og
|
| 766 |
-
residual = residual.reshape(-1, residual.shape[-1])
|
| 767 |
-
if residual.stride(-1) != 1:
|
| 768 |
-
residual = residual.contiguous()
|
| 769 |
if x1 is not None:
|
| 770 |
assert x1.shape == x_shape_og
|
| 771 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 772 |
-
x1 = x1.reshape(-1, x1.shape[-1])
|
| 773 |
-
if x1.stride(-1) != 1:
|
| 774 |
-
x1 = x1.contiguous()
|
| 775 |
weight = weight.contiguous()
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
weight1 = weight1.contiguous()
|
| 780 |
-
if bias1 is not None:
|
| 781 |
-
bias1 = bias1.contiguous()
|
| 782 |
if rowscale is not None:
|
| 783 |
rowscale = rowscale.reshape(-1).contiguous()
|
| 784 |
residual_dtype = (
|
|
@@ -790,24 +893,24 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 790 |
out = out.reshape(-1, out.shape[-1])
|
| 791 |
if residual_out is not None:
|
| 792 |
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
| 793 |
-
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = (
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
)
|
| 812 |
ctx.save_for_backward(
|
| 813 |
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
|
@@ -820,17 +923,12 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 820 |
ctx.has_x1 = x1 is not None
|
| 821 |
ctx.prenorm = prenorm
|
| 822 |
ctx.x_dtype = x.dtype
|
|
|
|
| 823 |
y = y.reshape(x_shape_og)
|
| 824 |
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
| 825 |
-
residual_out = (
|
| 826 |
-
|
| 827 |
-
)
|
| 828 |
-
dropout_mask = (
|
| 829 |
-
dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
| 830 |
-
)
|
| 831 |
-
dropout_mask1 = (
|
| 832 |
-
dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
| 833 |
-
)
|
| 834 |
if not return_dropout_mask:
|
| 835 |
if weight1 is None:
|
| 836 |
return y if not prenorm else (y, residual_out)
|
|
@@ -854,26 +952,19 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 854 |
def backward(ctx, dy, *args):
|
| 855 |
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
| 856 |
dy = dy.reshape(-1, dy.shape[-1])
|
| 857 |
-
if dy.stride(-1) != 1:
|
| 858 |
-
dy = dy.contiguous()
|
| 859 |
-
assert dy.shape == x.shape
|
| 860 |
if weight1 is not None:
|
| 861 |
dy1, args = args[0], args[1:]
|
| 862 |
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
| 863 |
-
if dy1.stride(-1) != 1:
|
| 864 |
-
dy1 = dy1.contiguous()
|
| 865 |
assert dy1.shape == x.shape
|
| 866 |
else:
|
| 867 |
dy1 = None
|
| 868 |
if ctx.prenorm:
|
| 869 |
dresidual = args[0]
|
| 870 |
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
| 871 |
-
if dresidual.stride(-1) != 1:
|
| 872 |
-
dresidual = dresidual.contiguous()
|
| 873 |
assert dresidual.shape == x.shape
|
| 874 |
else:
|
| 875 |
dresidual = None
|
| 876 |
-
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
|
| 877 |
dy,
|
| 878 |
x,
|
| 879 |
weight,
|
|
@@ -890,8 +981,10 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 890 |
rowscale,
|
| 891 |
ctx.has_residual,
|
| 892 |
ctx.has_x1,
|
|
|
|
| 893 |
ctx.is_rms_norm,
|
| 894 |
x_dtype=ctx.x_dtype,
|
|
|
|
| 895 |
)
|
| 896 |
return (
|
| 897 |
dx.reshape(ctx.x_shape_og),
|
|
@@ -910,6 +1003,8 @@ class LayerNormFn(torch.autograd.Function):
|
|
| 910 |
None,
|
| 911 |
None,
|
| 912 |
None,
|
|
|
|
|
|
|
| 913 |
)
|
| 914 |
|
| 915 |
|
|
@@ -926,10 +1021,12 @@ def layer_norm_fn(
|
|
| 926 |
rowscale=None,
|
| 927 |
prenorm=False,
|
| 928 |
residual_in_fp32=False,
|
|
|
|
| 929 |
is_rms_norm=False,
|
| 930 |
return_dropout_mask=False,
|
|
|
|
| 931 |
out=None,
|
| 932 |
-
residual_out=None
|
| 933 |
):
|
| 934 |
return LayerNormFn.apply(
|
| 935 |
x,
|
|
@@ -944,10 +1041,12 @@ def layer_norm_fn(
|
|
| 944 |
rowscale,
|
| 945 |
prenorm,
|
| 946 |
residual_in_fp32,
|
|
|
|
| 947 |
is_rms_norm,
|
| 948 |
return_dropout_mask,
|
|
|
|
| 949 |
out,
|
| 950 |
-
residual_out
|
| 951 |
)
|
| 952 |
|
| 953 |
|
|
@@ -964,9 +1063,11 @@ def rms_norm_fn(
|
|
| 964 |
rowscale=None,
|
| 965 |
prenorm=False,
|
| 966 |
residual_in_fp32=False,
|
|
|
|
| 967 |
return_dropout_mask=False,
|
|
|
|
| 968 |
out=None,
|
| 969 |
-
residual_out=None
|
| 970 |
):
|
| 971 |
return LayerNormFn.apply(
|
| 972 |
x,
|
|
@@ -981,16 +1082,19 @@ def rms_norm_fn(
|
|
| 981 |
rowscale,
|
| 982 |
prenorm,
|
| 983 |
residual_in_fp32,
|
|
|
|
| 984 |
True,
|
| 985 |
return_dropout_mask,
|
|
|
|
| 986 |
out,
|
| 987 |
-
residual_out
|
| 988 |
)
|
| 989 |
|
| 990 |
|
| 991 |
class RMSNorm(torch.nn.Module):
|
| 992 |
|
| 993 |
-
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0,
|
|
|
|
| 994 |
factory_kwargs = {"device": device, "dtype": dtype}
|
| 995 |
super().__init__()
|
| 996 |
self.eps = eps
|
|
@@ -998,12 +1102,16 @@ class RMSNorm(torch.nn.Module):
|
|
| 998 |
self.drop = torch.nn.Dropout(dropout_p)
|
| 999 |
else:
|
| 1000 |
self.drop = None
|
|
|
|
| 1001 |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
| 1002 |
self.register_parameter("bias", None)
|
| 1003 |
self.reset_parameters()
|
| 1004 |
|
| 1005 |
def reset_parameters(self):
|
| 1006 |
-
|
|
|
|
|
|
|
|
|
|
| 1007 |
|
| 1008 |
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
| 1009 |
return rms_norm_fn(
|
|
@@ -1015,12 +1123,14 @@ class RMSNorm(torch.nn.Module):
|
|
| 1015 |
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
| 1016 |
prenorm=prenorm,
|
| 1017 |
residual_in_fp32=residual_in_fp32,
|
|
|
|
| 1018 |
)
|
| 1019 |
|
| 1020 |
|
| 1021 |
class LayerNormLinearFn(torch.autograd.Function):
|
|
|
|
| 1022 |
@staticmethod
|
| 1023 |
-
@custom_fwd
|
| 1024 |
def forward(
|
| 1025 |
ctx,
|
| 1026 |
x,
|
|
@@ -1036,17 +1146,12 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
| 1036 |
):
|
| 1037 |
x_shape_og = x.shape
|
| 1038 |
# reshape input data into 2D tensor
|
| 1039 |
-
x = x.reshape(-1, x.shape[-1])
|
| 1040 |
-
if x.stride(-1) != 1:
|
| 1041 |
-
x = x.contiguous()
|
| 1042 |
if residual is not None:
|
| 1043 |
assert residual.shape == x_shape_og
|
| 1044 |
-
residual = residual.reshape(-1, residual.shape[-1])
|
| 1045 |
-
if residual.stride(-1) != 1:
|
| 1046 |
-
residual = residual.contiguous()
|
| 1047 |
norm_weight = norm_weight.contiguous()
|
| 1048 |
-
|
| 1049 |
-
norm_bias = norm_bias.contiguous()
|
| 1050 |
residual_dtype = (
|
| 1051 |
residual.dtype
|
| 1052 |
if residual is not None
|
|
@@ -1058,25 +1163,17 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
| 1058 |
norm_bias,
|
| 1059 |
eps,
|
| 1060 |
residual,
|
| 1061 |
-
out_dtype=(
|
| 1062 |
-
None
|
| 1063 |
-
if not torch.is_autocast_enabled()
|
| 1064 |
-
else torch.get_autocast_gpu_dtype()
|
| 1065 |
-
),
|
| 1066 |
residual_dtype=residual_dtype,
|
| 1067 |
is_rms_norm=is_rms_norm,
|
| 1068 |
)
|
| 1069 |
y = y.reshape(x_shape_og)
|
| 1070 |
-
dtype = (
|
| 1071 |
-
torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
|
| 1072 |
-
)
|
| 1073 |
linear_weight = linear_weight.to(dtype)
|
| 1074 |
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
| 1075 |
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
| 1076 |
# We don't store y, will be recomputed in the backward pass to save memory
|
| 1077 |
-
ctx.save_for_backward(
|
| 1078 |
-
residual_out, norm_weight, norm_bias, linear_weight, mean, rstd
|
| 1079 |
-
)
|
| 1080 |
ctx.x_shape_og = x_shape_og
|
| 1081 |
ctx.eps = eps
|
| 1082 |
ctx.is_rms_norm = is_rms_norm
|
|
@@ -1087,20 +1184,17 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
| 1087 |
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
| 1088 |
|
| 1089 |
@staticmethod
|
| 1090 |
-
@custom_bwd
|
| 1091 |
def backward(ctx, dout, *args):
|
| 1092 |
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
| 1093 |
dout = dout.reshape(-1, dout.shape[-1])
|
| 1094 |
dy = F.linear(dout, linear_weight.t())
|
| 1095 |
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
| 1096 |
-
|
| 1097 |
-
dy = dy.contiguous()
|
| 1098 |
assert dy.shape == x.shape
|
| 1099 |
if ctx.prenorm:
|
| 1100 |
dresidual = args[0]
|
| 1101 |
-
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
| 1102 |
-
if dresidual.stride(-1) != 1:
|
| 1103 |
-
dresidual = dresidual.contiguous()
|
| 1104 |
assert dresidual.shape == x.shape
|
| 1105 |
else:
|
| 1106 |
dresidual = None
|
|
|
|
| 7 |
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
| 8 |
|
| 9 |
import math
|
| 10 |
+
from typing import Optional, List
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import torch.nn.functional as F
|
| 14 |
+
from torch import Tensor
|
| 15 |
|
| 16 |
import triton
|
| 17 |
import triton.language as tl
|
| 18 |
|
| 19 |
+
from ._ops import add_op_namespace_prefix
|
| 20 |
+
from .utils.torch import custom_fwd, custom_bwd
|
| 21 |
+
from .utils.library import triton_op
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def maybe_contiguous_lastdim(x):
|
| 25 |
+
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def maybe_contiguous(x):
|
| 29 |
+
return x.contiguous() if x is not None else None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def triton_autotune_configs():
|
| 33 |
+
# Return configs with a valid warp count for the current device
|
| 34 |
+
configs = []
|
| 35 |
+
# Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
|
| 36 |
+
max_threads_per_block = 1024
|
| 37 |
+
# Default to warp size 32 if not defined by device
|
| 38 |
+
warp_size = getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
|
| 39 |
+
# Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
|
| 40 |
+
return [triton.Config({}, num_warps=warp_count) for warp_count in [1, 2, 4, 8, 16, 32]
|
| 41 |
+
if warp_count * warp_size <= max_threads_per_block]
|
| 42 |
+
# return [triton.Config({}, num_warps=8)]
|
| 43 |
+
|
| 44 |
|
| 45 |
def layer_norm_ref(
|
| 46 |
x,
|
|
|
|
| 54 |
dropout_p=0.0,
|
| 55 |
rowscale=None,
|
| 56 |
prenorm=False,
|
| 57 |
+
zero_centered_weight=False,
|
| 58 |
dropout_mask=None,
|
| 59 |
dropout_mask1=None,
|
| 60 |
upcast=False,
|
|
|
|
| 68 |
x1 = x1.float() if x1 is not None else None
|
| 69 |
weight1 = weight1.float() if weight1 is not None else None
|
| 70 |
bias1 = bias1.float() if bias1 is not None else None
|
| 71 |
+
if zero_centered_weight:
|
| 72 |
+
weight = weight + 1.0
|
| 73 |
+
if weight1 is not None:
|
| 74 |
+
weight1 = weight1 + 1.0
|
| 75 |
if x1 is not None:
|
| 76 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 77 |
if rowscale is not None:
|
|
|
|
| 90 |
x = x + x1
|
| 91 |
if residual is not None:
|
| 92 |
x = (x + residual).to(x.dtype)
|
| 93 |
+
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
| 94 |
+
dtype
|
| 95 |
+
)
|
| 96 |
if weight1 is None:
|
| 97 |
return out if not prenorm else (out, x)
|
| 98 |
else:
|
|
|
|
| 114 |
dropout_p=0.0,
|
| 115 |
rowscale=None,
|
| 116 |
prenorm=False,
|
| 117 |
+
zero_centered_weight=False,
|
| 118 |
dropout_mask=None,
|
| 119 |
dropout_mask1=None,
|
| 120 |
upcast=False,
|
|
|
|
| 128 |
x1 = x1.float() if x1 is not None else None
|
| 129 |
weight1 = weight1.float() if weight1 is not None else None
|
| 130 |
bias1 = bias1.float() if bias1 is not None else None
|
| 131 |
+
if zero_centered_weight:
|
| 132 |
+
weight = weight + 1.0
|
| 133 |
+
if weight1 is not None:
|
| 134 |
+
weight1 = weight1 + 1.0
|
| 135 |
if x1 is not None:
|
| 136 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 137 |
if rowscale is not None:
|
|
|
|
| 151 |
if residual is not None:
|
| 152 |
x = (x + residual).to(x.dtype)
|
| 153 |
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
| 154 |
+
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype)
|
|
|
|
|
|
|
| 155 |
if weight1 is None:
|
| 156 |
return out if not prenorm else (out, x)
|
| 157 |
else:
|
| 158 |
+
out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to(
|
| 159 |
+
dtype
|
| 160 |
+
)
|
| 161 |
return (out, out1) if not prenorm else (out, out1, x)
|
| 162 |
|
| 163 |
|
| 164 |
@triton.autotune(
|
| 165 |
+
configs=triton_autotune_configs(),
|
| 166 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS", "HAS_X1", "HAS_W1", "HAS_B1"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
)
|
| 168 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
| 169 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 170 |
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
| 171 |
+
# @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
| 172 |
+
# @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
| 173 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
| 174 |
@triton.jit
|
| 175 |
def _layer_norm_fwd_1pass_kernel(
|
| 176 |
X, # pointer to the input
|
|
|
|
| 186 |
ROWSCALE,
|
| 187 |
SEEDS, # Dropout seeds for each row
|
| 188 |
DROPOUT_MASK,
|
| 189 |
+
DROPOUT_MASK1,
|
| 190 |
Mean, # pointer to the mean
|
| 191 |
Rstd, # pointer to the 1/std
|
| 192 |
stride_x_row, # how much to increase the pointer when moving by 1 row
|
|
|
|
| 199 |
N, # number of columns in X
|
| 200 |
eps, # epsilon to avoid division by zero
|
| 201 |
dropout_p, # Dropout probability
|
| 202 |
+
zero_centered_weight, # If true, add 1.0 to the weight
|
| 203 |
IS_RMS_NORM: tl.constexpr,
|
| 204 |
BLOCK_N: tl.constexpr,
|
| 205 |
HAS_RESIDUAL: tl.constexpr,
|
|
|
|
| 233 |
if HAS_DROPOUT:
|
| 234 |
# Compute dropout mask
|
| 235 |
# 7 rounds is good enough, and reduces register pressure
|
| 236 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
|
|
|
| 237 |
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
| 238 |
if STORE_DROPOUT_MASK:
|
| 239 |
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
|
|
|
| 246 |
# Compute dropout mask
|
| 247 |
# 7 rounds is good enough, and reduces register pressure
|
| 248 |
keep_mask = (
|
| 249 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
| 250 |
)
|
| 251 |
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
| 252 |
if STORE_DROPOUT_MASK:
|
| 253 |
+
tl.store(DROPOUT_MASK1 + row * N + cols, keep_mask, mask=cols < N)
|
| 254 |
x += x1
|
| 255 |
if HAS_RESIDUAL:
|
| 256 |
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
|
|
|
| 270 |
# Normalize and apply linear transformation
|
| 271 |
mask = cols < N
|
| 272 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 273 |
+
if zero_centered_weight:
|
| 274 |
+
w += 1.0
|
| 275 |
if HAS_BIAS:
|
| 276 |
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
| 277 |
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
|
|
|
| 280 |
tl.store(Y + cols, y, mask=mask)
|
| 281 |
if HAS_W1:
|
| 282 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 283 |
+
if zero_centered_weight:
|
| 284 |
+
w1 += 1.0
|
| 285 |
if HAS_B1:
|
| 286 |
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
| 287 |
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
|
|
|
| 289 |
|
| 290 |
|
| 291 |
def _layer_norm_fwd(
|
| 292 |
+
x: Tensor,
|
| 293 |
+
weight: Tensor,
|
| 294 |
+
bias: Tensor,
|
| 295 |
+
eps: float,
|
| 296 |
+
residual: Optional[Tensor] = None,
|
| 297 |
+
x1: Optional[Tensor] = None,
|
| 298 |
+
weight1: Optional[Tensor] = None,
|
| 299 |
+
bias1: Optional[Tensor] = None,
|
| 300 |
+
dropout_p: float = 0.0,
|
| 301 |
+
rowscale: Optional[Tensor] = None,
|
| 302 |
+
out_dtype: Optional[torch.dtype] = None,
|
| 303 |
+
residual_dtype: Optional[torch.dtype] = None,
|
| 304 |
+
zero_centered_weight: bool = False,
|
| 305 |
+
is_rms_norm: bool = False,
|
| 306 |
+
return_dropout_mask: bool = False,
|
| 307 |
+
out: Optional[Tensor] = None,
|
| 308 |
+
residual_out: Optional[Tensor] = None
|
| 309 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
| 310 |
+
# Need to wrap to handle the case where residual_out is a alias of x, which makes torch.library
|
| 311 |
+
# and torch.compile unhappy. Also allocate memory for out and residual_out if they are None
|
| 312 |
+
# so that _layer_norm_fwd_impl doesn't have to return them.
|
| 313 |
+
if out is None:
|
| 314 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
| 315 |
if residual is not None:
|
| 316 |
residual_dtype = residual.dtype
|
| 317 |
+
if residual_out is None and (
|
| 318 |
+
residual is not None
|
| 319 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
| 320 |
+
or dropout_p > 0.0
|
| 321 |
+
or rowscale is not None
|
| 322 |
+
or x1 is not None
|
| 323 |
+
):
|
| 324 |
+
residual_out = torch.empty_like(
|
| 325 |
+
x, dtype=residual_dtype if residual_dtype is not None else x.dtype
|
| 326 |
+
)
|
| 327 |
+
else:
|
| 328 |
+
residual_out = None
|
| 329 |
+
y1, mean, rstd, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd_impl(
|
| 330 |
+
x,
|
| 331 |
+
weight,
|
| 332 |
+
bias,
|
| 333 |
+
eps,
|
| 334 |
+
out,
|
| 335 |
+
residual=residual,
|
| 336 |
+
x1=x1,
|
| 337 |
+
weight1=weight1,
|
| 338 |
+
bias1=bias1,
|
| 339 |
+
dropout_p=dropout_p,
|
| 340 |
+
rowscale=rowscale,
|
| 341 |
+
zero_centered_weight=zero_centered_weight,
|
| 342 |
+
is_rms_norm=is_rms_norm,
|
| 343 |
+
return_dropout_mask=return_dropout_mask,
|
| 344 |
+
residual_out=residual_out,
|
| 345 |
+
)
|
| 346 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
| 347 |
+
if residual_out is None:
|
| 348 |
+
residual_out = x
|
| 349 |
+
return out, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
# [2025-04-28] torch.library.triton_op ignores the schema argument, but here we need the schema
|
| 353 |
+
# since we're returning a tuple of tensors
|
| 354 |
+
@triton_op(add_op_namespace_prefix("layer_norm_fwd_impl"), mutates_args={"out", "residual_out"},
|
| 355 |
+
schema="(Tensor x, Tensor weight, Tensor bias, float eps, Tensor(a!) out, Tensor? residual, Tensor? x1, Tensor? weight1, Tensor? bias1, float dropout_p, Tensor? rowscale, bool zero_centered_weight, bool is_rms_norm, bool return_dropout_mask, Tensor(a!)? residual_out) -> (Tensor y1, Tensor mean, Tensor rstd, Tensor seeds, Tensor dropout_mask, Tensor dropout_mask1)")
|
| 356 |
+
def _layer_norm_fwd_impl(
|
| 357 |
+
x: Tensor,
|
| 358 |
+
weight: Tensor,
|
| 359 |
+
bias: Tensor,
|
| 360 |
+
eps: float,
|
| 361 |
+
out: Tensor,
|
| 362 |
+
residual: Optional[Tensor] = None,
|
| 363 |
+
x1: Optional[Tensor] = None,
|
| 364 |
+
weight1: Optional[Tensor] = None,
|
| 365 |
+
bias1: Optional[Tensor] = None,
|
| 366 |
+
dropout_p: float = 0.0,
|
| 367 |
+
rowscale: Optional[Tensor] = None,
|
| 368 |
+
zero_centered_weight: bool = False,
|
| 369 |
+
is_rms_norm: bool = False,
|
| 370 |
+
return_dropout_mask: bool = False,
|
| 371 |
+
residual_out: Optional[Tensor] = None
|
| 372 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
| 373 |
M, N = x.shape
|
| 374 |
assert x.stride(-1) == 1
|
| 375 |
if residual is not None:
|
|
|
|
| 393 |
if rowscale is not None:
|
| 394 |
assert rowscale.is_contiguous()
|
| 395 |
assert rowscale.shape == (M,)
|
| 396 |
+
assert out.shape == x.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
assert out.stride(-1) == 1
|
| 398 |
+
if residual_out is not None:
|
| 399 |
+
assert residual_out.shape == x.shape
|
| 400 |
+
assert residual_out.stride(-1) == 1
|
| 401 |
if weight1 is not None:
|
| 402 |
y1 = torch.empty_like(out)
|
| 403 |
assert y1.stride(-1) == 1
|
| 404 |
else:
|
| 405 |
y1 = None
|
| 406 |
+
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 408 |
if dropout_p > 0.0:
|
| 409 |
seeds = torch.randint(
|
|
|
|
| 412 |
else:
|
| 413 |
seeds = None
|
| 414 |
if return_dropout_mask and dropout_p > 0.0:
|
| 415 |
+
dropout_mask = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
| 416 |
+
if x1 is not None:
|
| 417 |
+
dropout_mask1 = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
| 418 |
+
else:
|
| 419 |
+
dropout_mask1 = None
|
| 420 |
else:
|
| 421 |
+
dropout_mask, dropout_mask1 = None, None
|
| 422 |
# Less than 64KB per feature: enqueue fused kernel
|
| 423 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 424 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 425 |
if N > BLOCK_N:
|
| 426 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 427 |
with torch.cuda.device(x.device.index):
|
| 428 |
+
torch.library.wrap_triton(_layer_norm_fwd_1pass_kernel)[(M,)](
|
| 429 |
x,
|
| 430 |
out,
|
| 431 |
weight,
|
|
|
|
| 439 |
rowscale,
|
| 440 |
seeds,
|
| 441 |
dropout_mask,
|
| 442 |
+
dropout_mask1,
|
| 443 |
mean,
|
| 444 |
rstd,
|
| 445 |
x.stride(0),
|
|
|
|
| 452 |
N,
|
| 453 |
eps,
|
| 454 |
dropout_p,
|
| 455 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
| 456 |
+
int(zero_centered_weight),
|
| 457 |
is_rms_norm,
|
| 458 |
BLOCK_N,
|
| 459 |
residual is not None,
|
|
|
|
| 462 |
dropout_p > 0.0,
|
| 463 |
dropout_mask is not None,
|
| 464 |
rowscale is not None,
|
| 465 |
+
HAS_X1=x1 is not None,
|
| 466 |
+
HAS_W1=weight1 is not None,
|
| 467 |
+
HAS_B1=bias1 is not None,
|
| 468 |
)
|
| 469 |
+
return y1, mean, rstd, seeds, dropout_mask, dropout_mask1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
|
| 472 |
@triton.autotune(
|
| 473 |
+
configs=triton_autotune_configs(),
|
| 474 |
+
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
)
|
| 476 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
| 477 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 478 |
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
| 479 |
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
| 480 |
+
# @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
| 481 |
+
# @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
| 482 |
+
# @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
| 483 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
| 484 |
+
# @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
| 485 |
@triton.jit
|
| 486 |
def _layer_norm_bwd_kernel(
|
| 487 |
X, # pointer to the input
|
|
|
|
| 515 |
N, # number of columns in X
|
| 516 |
eps, # epsilon to avoid division by zero
|
| 517 |
dropout_p,
|
| 518 |
+
zero_centered_weight,
|
| 519 |
rows_per_program,
|
| 520 |
IS_RMS_NORM: tl.constexpr,
|
| 521 |
BLOCK_N: tl.constexpr,
|
|
|
|
| 549 |
if RECOMPUTE_OUTPUT:
|
| 550 |
Y += row_start * stride_y_row
|
| 551 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 552 |
+
if zero_centered_weight:
|
| 553 |
+
w += 1.0
|
| 554 |
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
| 555 |
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
| 556 |
if HAS_DY1:
|
| 557 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 558 |
+
if zero_centered_weight:
|
| 559 |
+
w1 += 1.0
|
| 560 |
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 561 |
if HAS_BIAS:
|
| 562 |
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
|
|
| 605 |
if HAS_DX1:
|
| 606 |
if HAS_DROPOUT:
|
| 607 |
keep_mask = (
|
| 608 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
| 609 |
)
|
| 610 |
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 611 |
else:
|
| 612 |
dx1 = dx
|
| 613 |
tl.store(DX1 + cols, dx1, mask=mask)
|
| 614 |
if HAS_DROPOUT:
|
| 615 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
|
|
|
|
|
|
| 616 |
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 617 |
if HAS_ROWSCALE:
|
| 618 |
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
|
|
|
| 642 |
|
| 643 |
|
| 644 |
def _layer_norm_bwd(
|
| 645 |
+
dy: Tensor,
|
| 646 |
+
x: Tensor,
|
| 647 |
+
weight: Tensor,
|
| 648 |
+
bias: Tensor,
|
| 649 |
+
eps: float,
|
| 650 |
+
mean: Tensor,
|
| 651 |
+
rstd: Tensor,
|
| 652 |
+
dresidual: Optional[Tensor] = None,
|
| 653 |
+
dy1: Optional[Tensor] = None,
|
| 654 |
+
weight1: Optional[Tensor] = None,
|
| 655 |
+
bias1: Optional[Tensor] = None,
|
| 656 |
+
seeds: Optional[Tensor] = None,
|
| 657 |
+
dropout_p: float = 0.0,
|
| 658 |
+
rowscale: Optional[Tensor] = None,
|
| 659 |
+
has_residual: bool = False,
|
| 660 |
+
has_x1: bool = False,
|
| 661 |
+
zero_centered_weight: bool = False,
|
| 662 |
+
is_rms_norm: bool = False,
|
| 663 |
+
x_dtype: Optional[torch.dtype] = None,
|
| 664 |
+
recompute_output: bool = False,
|
| 665 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
| 666 |
+
# Need to wrap to handle the case where dresidual_in or dx1 are aliases of x,
|
| 667 |
+
# which makes torch.library unhappy
|
| 668 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, y = _layer_norm_bwd_impl(
|
| 669 |
+
dy,
|
| 670 |
+
x,
|
| 671 |
+
weight,
|
| 672 |
+
bias,
|
| 673 |
+
eps,
|
| 674 |
+
mean,
|
| 675 |
+
rstd,
|
| 676 |
+
dresidual,
|
| 677 |
+
dy1,
|
| 678 |
+
weight1,
|
| 679 |
+
bias1,
|
| 680 |
+
seeds,
|
| 681 |
+
dropout_p,
|
| 682 |
+
rowscale,
|
| 683 |
+
has_residual,
|
| 684 |
+
has_x1,
|
| 685 |
+
zero_centered_weight,
|
| 686 |
+
is_rms_norm,
|
| 687 |
+
x_dtype=x_dtype,
|
| 688 |
+
recompute_output=recompute_output,
|
| 689 |
+
)
|
| 690 |
+
# Don't need to compute dresidual_in separately in this case
|
| 691 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
| 692 |
+
dresidual_in = dx
|
| 693 |
+
if has_x1 and dropout_p == 0.0:
|
| 694 |
+
dx1 = dx
|
| 695 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
@triton_op(add_op_namespace_prefix("layer_norm_bwd_impl"), mutates_args={},
|
| 700 |
+
schema="(Tensor dy, Tensor x, Tensor weight, Tensor bias, float eps, Tensor mean, Tensor rstd, Tensor? dresidual, Tensor? dy1, Tensor? weight1, Tensor? bias1, Tensor? seeds, float dropout_p, Tensor? rowscale, bool has_residual, bool has_x1, bool zero_centered_weight, bool is_rms_norm, ScalarType? x_dtype, bool recompute_output) -> (Tensor dx, Tensor dw, Tensor db, Tensor dresidual_in, Tensor dx1, Tensor dw1, Tensor db1, Tensor y)",
|
| 701 |
+
allow_decomposition=False, # Don't let torch.compile trace inside
|
| 702 |
+
)
|
| 703 |
+
def _layer_norm_bwd_impl(
|
| 704 |
+
dy: Tensor,
|
| 705 |
+
x: Tensor,
|
| 706 |
+
weight: Tensor,
|
| 707 |
+
bias: Tensor,
|
| 708 |
+
eps: float,
|
| 709 |
+
mean: Tensor,
|
| 710 |
+
rstd: Tensor,
|
| 711 |
+
dresidual: Optional[Tensor] = None,
|
| 712 |
+
dy1: Optional[Tensor] = None,
|
| 713 |
+
weight1: Optional[Tensor] = None,
|
| 714 |
+
bias1: Optional[Tensor] = None,
|
| 715 |
+
seeds: Optional[Tensor] = None,
|
| 716 |
+
dropout_p: float = 0.0,
|
| 717 |
+
rowscale: Optional[Tensor] = None,
|
| 718 |
+
has_residual: bool = False,
|
| 719 |
+
has_x1: bool = False,
|
| 720 |
+
zero_centered_weight: bool = False,
|
| 721 |
+
is_rms_norm: bool = False,
|
| 722 |
+
x_dtype: Optional[torch.dtype] = None,
|
| 723 |
+
recompute_output: bool = False,
|
| 724 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
| 725 |
M, N = x.shape
|
| 726 |
assert x.stride(-1) == 1
|
| 727 |
+
dy = maybe_contiguous_lastdim(dy)
|
| 728 |
assert dy.stride(-1) == 1
|
| 729 |
assert dy.shape == (M, N)
|
| 730 |
if dresidual is not None:
|
| 731 |
+
dresidual = maybe_contiguous_lastdim(dresidual)
|
| 732 |
assert dresidual.stride(-1) == 1
|
| 733 |
assert dresidual.shape == (M, N)
|
| 734 |
assert weight.shape == (N,)
|
|
|
|
| 737 |
assert bias.stride(-1) == 1
|
| 738 |
assert bias.shape == (N,)
|
| 739 |
if dy1 is not None:
|
| 740 |
+
dy1 = maybe_contiguous_lastdim(dy1)
|
| 741 |
assert weight1 is not None
|
| 742 |
assert dy1.shape == dy.shape
|
| 743 |
assert dy1.stride(-1) == 1
|
|
|
|
| 766 |
else None
|
| 767 |
)
|
| 768 |
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
| 769 |
+
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
if recompute_output:
|
| 771 |
+
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"
|
|
|
|
|
|
|
| 772 |
|
| 773 |
# Less than 64KB per feature: enqueue fused kernel
|
| 774 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 775 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 776 |
if N > BLOCK_N:
|
| 777 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 778 |
+
# Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
|
| 779 |
+
# latency of the gmem reads/writes, but will increase the time of summing up dw / db.
|
| 780 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
|
| 781 |
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
| 782 |
_db = (
|
| 783 |
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
|
|
|
| 789 |
rows_per_program = math.ceil(M / sm_count)
|
| 790 |
grid = (sm_count,)
|
| 791 |
with torch.cuda.device(x.device.index):
|
| 792 |
+
torch.library.wrap_triton(_layer_norm_bwd_kernel)[grid](
|
| 793 |
x,
|
| 794 |
weight,
|
| 795 |
bias,
|
|
|
|
| 821 |
N,
|
| 822 |
eps,
|
| 823 |
dropout_p,
|
| 824 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
| 825 |
+
int(zero_centered_weight),
|
| 826 |
rows_per_program,
|
| 827 |
is_rms_norm,
|
| 828 |
BLOCK_N,
|
|
|
|
| 830 |
dresidual_in is not None,
|
| 831 |
bias is not None,
|
| 832 |
dropout_p > 0.0,
|
| 833 |
+
HAS_ROWSCALE=rowscale is not None,
|
| 834 |
+
HAS_DY1=dy1 is not None,
|
| 835 |
+
HAS_DX1=dx1 is not None,
|
| 836 |
+
HAS_B1=bias1 is not None,
|
| 837 |
+
RECOMPUTE_OUTPUT=y is not None,
|
| 838 |
)
|
| 839 |
dw = _dw.sum(0).to(weight.dtype)
|
| 840 |
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
| 841 |
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
| 842 |
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
| 843 |
+
# dresidual_in and dx1 could be None, the wrapper will handle assigning them from dx
|
| 844 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
|
| 846 |
|
| 847 |
class LayerNormFn(torch.autograd.Function):
|
| 848 |
+
|
| 849 |
@staticmethod
|
| 850 |
def forward(
|
| 851 |
ctx,
|
|
|
|
| 861 |
rowscale=None,
|
| 862 |
prenorm=False,
|
| 863 |
residual_in_fp32=False,
|
| 864 |
+
zero_centered_weight=False,
|
| 865 |
is_rms_norm=False,
|
| 866 |
return_dropout_mask=False,
|
| 867 |
+
out_dtype=None,
|
| 868 |
out=None,
|
| 869 |
+
residual_out=None
|
| 870 |
):
|
| 871 |
x_shape_og = x.shape
|
| 872 |
# reshape input data into 2D tensor
|
| 873 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
|
|
|
|
|
|
| 874 |
if residual is not None:
|
| 875 |
assert residual.shape == x_shape_og
|
| 876 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
|
|
|
|
|
|
| 877 |
if x1 is not None:
|
| 878 |
assert x1.shape == x_shape_og
|
| 879 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 880 |
+
x1 = maybe_contiguous_lastdim(x1.reshape(-1, x1.shape[-1]))
|
|
|
|
|
|
|
| 881 |
weight = weight.contiguous()
|
| 882 |
+
bias = maybe_contiguous(bias)
|
| 883 |
+
weight1 = maybe_contiguous(weight1)
|
| 884 |
+
bias1 = maybe_contiguous(bias1)
|
|
|
|
|
|
|
|
|
|
| 885 |
if rowscale is not None:
|
| 886 |
rowscale = rowscale.reshape(-1).contiguous()
|
| 887 |
residual_dtype = (
|
|
|
|
| 893 |
out = out.reshape(-1, out.shape[-1])
|
| 894 |
if residual_out is not None:
|
| 895 |
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
| 896 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
|
| 897 |
+
x,
|
| 898 |
+
weight,
|
| 899 |
+
bias,
|
| 900 |
+
eps,
|
| 901 |
+
residual,
|
| 902 |
+
x1,
|
| 903 |
+
weight1,
|
| 904 |
+
bias1,
|
| 905 |
+
dropout_p=dropout_p,
|
| 906 |
+
rowscale=rowscale,
|
| 907 |
+
out_dtype=out_dtype,
|
| 908 |
+
residual_dtype=residual_dtype,
|
| 909 |
+
zero_centered_weight=zero_centered_weight,
|
| 910 |
+
is_rms_norm=is_rms_norm,
|
| 911 |
+
return_dropout_mask=return_dropout_mask,
|
| 912 |
+
out=out,
|
| 913 |
+
residual_out=residual_out,
|
| 914 |
)
|
| 915 |
ctx.save_for_backward(
|
| 916 |
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
|
|
|
| 923 |
ctx.has_x1 = x1 is not None
|
| 924 |
ctx.prenorm = prenorm
|
| 925 |
ctx.x_dtype = x.dtype
|
| 926 |
+
ctx.zero_centered_weight = zero_centered_weight
|
| 927 |
y = y.reshape(x_shape_og)
|
| 928 |
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
| 929 |
+
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
|
| 930 |
+
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
| 931 |
+
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 932 |
if not return_dropout_mask:
|
| 933 |
if weight1 is None:
|
| 934 |
return y if not prenorm else (y, residual_out)
|
|
|
|
| 952 |
def backward(ctx, dy, *args):
|
| 953 |
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
| 954 |
dy = dy.reshape(-1, dy.shape[-1])
|
|
|
|
|
|
|
|
|
|
| 955 |
if weight1 is not None:
|
| 956 |
dy1, args = args[0], args[1:]
|
| 957 |
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
|
|
|
|
|
|
| 958 |
assert dy1.shape == x.shape
|
| 959 |
else:
|
| 960 |
dy1 = None
|
| 961 |
if ctx.prenorm:
|
| 962 |
dresidual = args[0]
|
| 963 |
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
|
|
|
|
|
|
| 964 |
assert dresidual.shape == x.shape
|
| 965 |
else:
|
| 966 |
dresidual = None
|
| 967 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, _ = _layer_norm_bwd(
|
| 968 |
dy,
|
| 969 |
x,
|
| 970 |
weight,
|
|
|
|
| 981 |
rowscale,
|
| 982 |
ctx.has_residual,
|
| 983 |
ctx.has_x1,
|
| 984 |
+
ctx.zero_centered_weight,
|
| 985 |
ctx.is_rms_norm,
|
| 986 |
x_dtype=ctx.x_dtype,
|
| 987 |
+
recompute_output=False,
|
| 988 |
)
|
| 989 |
return (
|
| 990 |
dx.reshape(ctx.x_shape_og),
|
|
|
|
| 1003 |
None,
|
| 1004 |
None,
|
| 1005 |
None,
|
| 1006 |
+
None,
|
| 1007 |
+
None,
|
| 1008 |
)
|
| 1009 |
|
| 1010 |
|
|
|
|
| 1021 |
rowscale=None,
|
| 1022 |
prenorm=False,
|
| 1023 |
residual_in_fp32=False,
|
| 1024 |
+
zero_centered_weight=False,
|
| 1025 |
is_rms_norm=False,
|
| 1026 |
return_dropout_mask=False,
|
| 1027 |
+
out_dtype=None,
|
| 1028 |
out=None,
|
| 1029 |
+
residual_out=None
|
| 1030 |
):
|
| 1031 |
return LayerNormFn.apply(
|
| 1032 |
x,
|
|
|
|
| 1041 |
rowscale,
|
| 1042 |
prenorm,
|
| 1043 |
residual_in_fp32,
|
| 1044 |
+
zero_centered_weight,
|
| 1045 |
is_rms_norm,
|
| 1046 |
return_dropout_mask,
|
| 1047 |
+
out_dtype,
|
| 1048 |
out,
|
| 1049 |
+
residual_out
|
| 1050 |
)
|
| 1051 |
|
| 1052 |
|
|
|
|
| 1063 |
rowscale=None,
|
| 1064 |
prenorm=False,
|
| 1065 |
residual_in_fp32=False,
|
| 1066 |
+
zero_centered_weight=False,
|
| 1067 |
return_dropout_mask=False,
|
| 1068 |
+
out_dtype=None,
|
| 1069 |
out=None,
|
| 1070 |
+
residual_out=None
|
| 1071 |
):
|
| 1072 |
return LayerNormFn.apply(
|
| 1073 |
x,
|
|
|
|
| 1082 |
rowscale,
|
| 1083 |
prenorm,
|
| 1084 |
residual_in_fp32,
|
| 1085 |
+
zero_centered_weight,
|
| 1086 |
True,
|
| 1087 |
return_dropout_mask,
|
| 1088 |
+
out_dtype,
|
| 1089 |
out,
|
| 1090 |
+
residual_out
|
| 1091 |
)
|
| 1092 |
|
| 1093 |
|
| 1094 |
class RMSNorm(torch.nn.Module):
|
| 1095 |
|
| 1096 |
+
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
|
| 1097 |
+
device=None, dtype=None):
|
| 1098 |
factory_kwargs = {"device": device, "dtype": dtype}
|
| 1099 |
super().__init__()
|
| 1100 |
self.eps = eps
|
|
|
|
| 1102 |
self.drop = torch.nn.Dropout(dropout_p)
|
| 1103 |
else:
|
| 1104 |
self.drop = None
|
| 1105 |
+
self.zero_centered_weight = zero_centered_weight
|
| 1106 |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
| 1107 |
self.register_parameter("bias", None)
|
| 1108 |
self.reset_parameters()
|
| 1109 |
|
| 1110 |
def reset_parameters(self):
|
| 1111 |
+
if not self.zero_centered_weight:
|
| 1112 |
+
torch.nn.init.ones_(self.weight)
|
| 1113 |
+
else:
|
| 1114 |
+
torch.nn.init.zeros_(self.weight)
|
| 1115 |
|
| 1116 |
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
| 1117 |
return rms_norm_fn(
|
|
|
|
| 1123 |
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
| 1124 |
prenorm=prenorm,
|
| 1125 |
residual_in_fp32=residual_in_fp32,
|
| 1126 |
+
zero_centered_weight=self.zero_centered_weight,
|
| 1127 |
)
|
| 1128 |
|
| 1129 |
|
| 1130 |
class LayerNormLinearFn(torch.autograd.Function):
|
| 1131 |
+
|
| 1132 |
@staticmethod
|
| 1133 |
+
@custom_fwd
|
| 1134 |
def forward(
|
| 1135 |
ctx,
|
| 1136 |
x,
|
|
|
|
| 1146 |
):
|
| 1147 |
x_shape_og = x.shape
|
| 1148 |
# reshape input data into 2D tensor
|
| 1149 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
|
|
|
|
|
|
| 1150 |
if residual is not None:
|
| 1151 |
assert residual.shape == x_shape_og
|
| 1152 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
|
|
|
|
|
|
| 1153 |
norm_weight = norm_weight.contiguous()
|
| 1154 |
+
norm_bias = maybe_contiguous(norm_bias)
|
|
|
|
| 1155 |
residual_dtype = (
|
| 1156 |
residual.dtype
|
| 1157 |
if residual is not None
|
|
|
|
| 1163 |
norm_bias,
|
| 1164 |
eps,
|
| 1165 |
residual,
|
| 1166 |
+
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_dtype("cuda"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1167 |
residual_dtype=residual_dtype,
|
| 1168 |
is_rms_norm=is_rms_norm,
|
| 1169 |
)
|
| 1170 |
y = y.reshape(x_shape_og)
|
| 1171 |
+
dtype = torch.get_autocast_dtype("cuda") if torch.is_autocast_enabled() else y.dtype
|
|
|
|
|
|
|
| 1172 |
linear_weight = linear_weight.to(dtype)
|
| 1173 |
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
| 1174 |
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
| 1175 |
# We don't store y, will be recomputed in the backward pass to save memory
|
| 1176 |
+
ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
|
|
|
|
|
|
|
| 1177 |
ctx.x_shape_og = x_shape_og
|
| 1178 |
ctx.eps = eps
|
| 1179 |
ctx.is_rms_norm = is_rms_norm
|
|
|
|
| 1184 |
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
| 1185 |
|
| 1186 |
@staticmethod
|
| 1187 |
+
@custom_bwd
|
| 1188 |
def backward(ctx, dout, *args):
|
| 1189 |
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
| 1190 |
dout = dout.reshape(-1, dout.shape[-1])
|
| 1191 |
dy = F.linear(dout, linear_weight.t())
|
| 1192 |
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
| 1193 |
+
dy = maybe_contiguous_lastdim(dy)
|
|
|
|
| 1194 |
assert dy.shape == x.shape
|
| 1195 |
if ctx.prenorm:
|
| 1196 |
dresidual = args[0]
|
| 1197 |
+
dresidual = maybe_contiguous_lastdim(dresidual.reshape(-1, dresidual.shape[-1]))
|
|
|
|
|
|
|
| 1198 |
assert dresidual.shape == x.shape
|
| 1199 |
else:
|
| 1200 |
dresidual = None
|
build/torch-universal/triton_layer_norm/utils/__init__.py
ADDED
|
File without changes
|
build/torch-universal/triton_layer_norm/utils/library.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/pytorch/pytorch/blob/v2.7.0/torch/_library/triton.py
|
| 2 |
+
# The PyTorch implementation simply ignores the schema argument, we simply modify it to use schema.
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Callable, Iterable, Union
|
| 5 |
+
|
| 6 |
+
from torch.library import custom_op, CustomOpDef
|
| 7 |
+
from torch._library.triton import set_wrap_triton_enabled
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def triton_op(
|
| 11 |
+
name: str,
|
| 12 |
+
fn: Optional[Callable] = None,
|
| 13 |
+
/,
|
| 14 |
+
*,
|
| 15 |
+
mutates_args: Union[str, Iterable[str]],
|
| 16 |
+
schema: Optional[str] = None,
|
| 17 |
+
# If allow_decomposition=True, this matches torch.library.triton_op behavior. If set to False,
|
| 18 |
+
# then it behaves like torch.library.custom_op instead, which doesn't decompose the operator
|
| 19 |
+
# and so inductor can't trace inside.
|
| 20 |
+
allow_decomposition=True,
|
| 21 |
+
) -> Callable:
|
| 22 |
+
def dec(fn: Callable[..., object]) -> CustomOpDef:
|
| 23 |
+
def backend_fn(*args, **kwargs): # type: ignore[no-untyped-def]
|
| 24 |
+
# Optimization: we're passing regular Tensors into the triton kernel, so
|
| 25 |
+
# no need to go through HOP dispatch
|
| 26 |
+
with set_wrap_triton_enabled(False):
|
| 27 |
+
return fn(*args, **kwargs)
|
| 28 |
+
|
| 29 |
+
result = custom_op(
|
| 30 |
+
name,
|
| 31 |
+
backend_fn,
|
| 32 |
+
mutates_args=mutates_args,
|
| 33 |
+
# This is the only difference with the PyTorch implementation
|
| 34 |
+
schema=schema,
|
| 35 |
+
)
|
| 36 |
+
from torch._subclasses.functional_tensor import FunctionalTensorMode
|
| 37 |
+
|
| 38 |
+
# We require that the user pass us a function that is make_fx traceable,
|
| 39 |
+
# so we can just register it as the Fake/meta kernel.
|
| 40 |
+
result.register_fake(fn)
|
| 41 |
+
|
| 42 |
+
if allow_decomposition:
|
| 43 |
+
# We decompose the operator when FunctionalTensorMode is active.
|
| 44 |
+
# The goal is to decompose the operator in AOTDispatcher.
|
| 45 |
+
# - With torch.compile, this means that the backend (usually Inductor)
|
| 46 |
+
# can see a call to the triton kernel(s) and so it can directly optimize
|
| 47 |
+
# them by inlining them into the lowering process.
|
| 48 |
+
def functional_decomp( # type: ignore[no-untyped-def]
|
| 49 |
+
mode, op, types, args, kwargs
|
| 50 |
+
):
|
| 51 |
+
from torch.export._trace import custom_triton_ops_decomposition_disabled
|
| 52 |
+
|
| 53 |
+
if custom_triton_ops_decomposition_disabled():
|
| 54 |
+
return mode.__torch_dispatch__(op, types, args, kwargs)
|
| 55 |
+
else:
|
| 56 |
+
with mode:
|
| 57 |
+
return fn(*args, **kwargs)
|
| 58 |
+
|
| 59 |
+
result.register_torch_dispatch(FunctionalTensorMode, functional_decomp)
|
| 60 |
+
|
| 61 |
+
return result
|
| 62 |
+
|
| 63 |
+
if fn is None:
|
| 64 |
+
return dec
|
| 65 |
+
else:
|
| 66 |
+
return dec(fn)
|
build/torch-universal/triton_layer_norm/utils/torch.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Callable
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def custom_amp_decorator(dec: Callable, cuda_amp_deprecated: bool):
|
| 6 |
+
def decorator(*args, **kwargs):
|
| 7 |
+
if cuda_amp_deprecated:
|
| 8 |
+
kwargs["device_type"] = "cuda"
|
| 9 |
+
return dec(*args, **kwargs)
|
| 10 |
+
return decorator
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
if hasattr(torch.amp, "custom_fwd"): # type: ignore[attr-defined]
|
| 14 |
+
deprecated = True
|
| 15 |
+
from torch.amp import custom_fwd, custom_bwd # type: ignore[attr-defined]
|
| 16 |
+
else:
|
| 17 |
+
deprecated = False
|
| 18 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
| 19 |
+
|
| 20 |
+
custom_fwd = custom_amp_decorator(custom_fwd, deprecated)
|
| 21 |
+
custom_bwd = custom_amp_decorator(custom_bwd, deprecated)
|