Commit 
							
							·
						
						ee5d4ef
	
1
								Parent(s):
							
							1881086
								
update README (#1)
Browse files- update README (2579df16b27d26f15371480035b35eca8a04ba81)
Co-authored-by: Will Berman <[email protected]>
- README.md +18 -318
 - controlnet_utils.py +0 -40
 - images/bag.png +0 -0
 - images/bag_scribble.png +0 -0
 - images/bag_scribble_out.png +0 -0
 - images/bird_canny_out.png +0 -0
 - images/chef_pose_out.png +0 -0
 - images/house.png +0 -0
 - images/house_seg.png +0 -0
 - images/house_seg_out.png +0 -0
 - images/man.png +0 -0
 - images/man_hed.png +0 -0
 - images/man_hed_out.png +0 -0
 - images/openpose.png +0 -0
 - images/pose.png +0 -0
 - images/room.png +0 -0
 - images/room_mlsd.png +0 -0
 - images/room_mlsd_out.png +0 -0
 - images/stormtrooper.png +0 -0
 - images/stormtrooper_depth.png +0 -0
 - images/stormtrooper_depth_out.png +0 -0
 - images/toy.png +0 -0
 - images/toy_normal.png +0 -0
 - images/toy_normal_out.png +0 -0
 
    	
        README.md
    CHANGED
    
    | 
         @@ -18,10 +18,12 @@ Controlnet's auxiliary models are trained with stable diffusion 1.5. Experimenta 
     | 
|
| 18 | 
         
             
            The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
         
     | 
| 19 | 
         | 
| 20 | 
         
             
            Some of the additional conditionings can be extracted from images via additional models. We extracted these
         
     | 
| 21 | 
         
            -
            additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/ 
     | 
| 22 | 
         | 
| 23 | 
         
             
            ## Canny edge detection
         
     | 
| 24 | 
         | 
| 
         | 
|
| 
         | 
|
| 25 | 
         
             
            Install opencv
         
     | 
| 26 | 
         | 
| 27 | 
         
             
            ```sh
         
     | 
| 
         @@ -31,7 +33,7 @@ $ pip install opencv-contrib-python 
     | 
|
| 31 | 
         
             
            ```python
         
     | 
| 32 | 
         
             
            import cv2
         
     | 
| 33 | 
         
             
            from PIL import Image
         
     | 
| 34 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 35 | 
         
             
            import torch
         
     | 
| 36 | 
         
             
            import numpy as np
         
     | 
| 37 | 
         | 
| 
         @@ -47,15 +49,23 @@ image = np.concatenate([image, image, image], axis=2) 
     | 
|
| 47 | 
         
             
            image = Image.fromarray(image)
         
     | 
| 48 | 
         | 
| 49 | 
         
             
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 50 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-canny",
         
     | 
| 51 | 
         
             
            )
         
     | 
| 52 | 
         | 
| 53 | 
         
             
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 54 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 55 | 
         
             
            )
         
     | 
| 56 | 
         
            -
            pipe.to('cuda')
         
     | 
| 57 | 
         | 
| 58 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 59 | 
         | 
| 60 | 
         
             
            image.save('images/bird_canny_out.png')
         
     | 
| 61 | 
         
             
            ```
         
     | 
| 
         @@ -66,316 +76,6 @@ image.save('images/bird_canny_out.png') 
     | 
|
| 66 | 
         | 
| 67 | 
         
             
            
         
     | 
| 68 | 
         | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
            Install the additional controlnet models package.
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            ```sh
         
     | 
| 74 | 
         
            -
            $ pip install git+https://github.com/patrickvonplaten/human_pose.git
         
     | 
| 75 | 
         
            -
            ```
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
            ```py
         
     | 
| 78 | 
         
            -
            from PIL import Image
         
     | 
| 79 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 80 | 
         
            -
            import torch
         
     | 
| 81 | 
         
            -
            from human_pose import MLSDdetector
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
            mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
         
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            image = Image.open('images/room.png')
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
            image = mlsd(image)
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 90 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-mlsd",
         
     | 
| 91 | 
         
            -
            )
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 94 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 95 | 
         
            -
            )
         
     | 
| 96 | 
         
            -
            pipe.to('cuda')
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
            image = pipe("room", image).images[0]
         
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
            image.save('images/room_mlsd_out.png')
         
     | 
| 101 | 
         
            -
            ```
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
            
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
            
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
            
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
            ## Pose estimation
         
     | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
            Install the additional controlnet models package.
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
            ```sh
         
     | 
| 114 | 
         
            -
            $ pip install git+https://github.com/patrickvonplaten/human_pose.git
         
     | 
| 115 | 
         
            -
            ```
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
            ```py
         
     | 
| 118 | 
         
            -
            from PIL import Image
         
     | 
| 119 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 120 | 
         
            -
            import torch
         
     | 
| 121 | 
         
            -
            from human_pose import OpenposeDetector
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
            openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
            image = Image.open('images/pose.png')
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
            image = openpose(image)
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 130 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-openpose",
         
     | 
| 131 | 
         
            -
            )
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 134 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 135 | 
         
            -
            )
         
     | 
| 136 | 
         
            -
            pipe.to('cuda')
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
            image = pipe("chef in the kitchen", image).images[0]
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
            image.save('images/chef_pose_out.png')
         
     | 
| 141 | 
         
            -
            ```
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
            
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
            
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
            
         
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
            ## Semantic Segmentation
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
            Semantic segmentation relies on transformers. Transformers is a 
         
     | 
| 152 | 
         
            -
            dependency of diffusers for running controlnet, so you should 
         
     | 
| 153 | 
         
            -
            have it installed already.
         
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
            ```py
         
     | 
| 156 | 
         
            -
            from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
         
     | 
| 157 | 
         
            -
            from PIL import Image
         
     | 
| 158 | 
         
            -
            import numpy as np
         
     | 
| 159 | 
         
            -
            from controlnet_utils import ade_palette
         
     | 
| 160 | 
         
            -
            import torch
         
     | 
| 161 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
            image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
         
     | 
| 164 | 
         
            -
            image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
            image = Image.open("./images/house.png").convert('RGB')
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
            pixel_values = image_processor(image, return_tensors="pt").pixel_values
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
            with torch.no_grad():
         
     | 
| 171 | 
         
            -
              outputs = image_segmentor(pixel_values)
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
            seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
            color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
            palette = np.array(ade_palette())
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
            for label, color in enumerate(palette):
         
     | 
| 180 | 
         
            -
                color_seg[seg == label, :] = color
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
            color_seg = color_seg.astype(np.uint8)
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
            image = Image.fromarray(color_seg)
         
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 187 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-seg",
         
     | 
| 188 | 
         
            -
            )
         
     | 
| 189 | 
         
            -
             
     | 
| 190 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 191 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 192 | 
         
            -
            )
         
     | 
| 193 | 
         
            -
            pipe.to('cuda')
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
            image = pipe("house", image).images[0]
         
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
            image.save('./images/house_seg_out.png')
         
     | 
| 198 | 
         
            -
            ```
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
            
         
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
            
         
     | 
| 203 | 
         
            -
             
     | 
| 204 | 
         
            -
            
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
            ## Depth control
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
            Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
         
     | 
| 209 | 
         
            -
            you should have it installed already.
         
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
            ```py
         
     | 
| 212 | 
         
            -
            from transformers import pipeline
         
     | 
| 213 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 214 | 
         
            -
            from PIL import Image
         
     | 
| 215 | 
         
            -
            import numpy as np
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
            depth_estimator = pipeline('depth-estimation')
         
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
            image = Image.open('./images/stormtrooper.png')
         
     | 
| 220 | 
         
            -
            image = depth_estimator(image)['depth']
         
     | 
| 221 | 
         
            -
            image = np.array(image)
         
     | 
| 222 | 
         
            -
            image = image[:, :, None]
         
     | 
| 223 | 
         
            -
            image = np.concatenate([image, image, image], axis=2)
         
     | 
| 224 | 
         
            -
            image = Image.fromarray(image)
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 227 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-depth",
         
     | 
| 228 | 
         
            -
            )
         
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 231 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 232 | 
         
            -
            )
         
     | 
| 233 | 
         
            -
            pipe.to('cuda')
         
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
            image = pipe("Stormtrooper's lecture", image).images[0]
         
     | 
| 236 | 
         
            -
             
     | 
| 237 | 
         
            -
            image.save('./images/stormtrooper_depth_out.png')
         
     | 
| 238 | 
         
            -
            ```
         
     | 
| 239 | 
         
            -
             
     | 
| 240 | 
         
            -
            
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
            
         
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
            
         
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
             
     | 
| 247 | 
         
            -
            ## Normal map
         
     | 
| 248 | 
         
            -
             
     | 
| 249 | 
         
            -
            ```py
         
     | 
| 250 | 
         
            -
            from PIL import Image
         
     | 
| 251 | 
         
            -
            from transformers import pipeline
         
     | 
| 252 | 
         
            -
            import numpy as np
         
     | 
| 253 | 
         
            -
            import cv2
         
     | 
| 254 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 255 | 
         
            -
             
     | 
| 256 | 
         
            -
            image = Image.open("images/toy.png").convert("RGB")
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
            depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
         
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
            image = depth_estimator(image)['predicted_depth'][0]
         
     | 
| 261 | 
         
            -
             
     | 
| 262 | 
         
            -
            image = image.numpy()
         
     | 
| 263 | 
         
            -
             
     | 
| 264 | 
         
            -
            image_depth = image.copy()
         
     | 
| 265 | 
         
            -
            image_depth -= np.min(image_depth)
         
     | 
| 266 | 
         
            -
            image_depth /= np.max(image_depth)
         
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
            bg_threhold = 0.4
         
     | 
| 269 | 
         
            -
             
     | 
| 270 | 
         
            -
            x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
         
     | 
| 271 | 
         
            -
            x[image_depth < bg_threhold] = 0
         
     | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
            -
            y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
         
     | 
| 274 | 
         
            -
            y[image_depth < bg_threhold] = 0
         
     | 
| 275 | 
         
            -
             
     | 
| 276 | 
         
            -
            z = np.ones_like(x) * np.pi * 2.0
         
     | 
| 277 | 
         
            -
             
     | 
| 278 | 
         
            -
            image = np.stack([x, y, z], axis=2)
         
     | 
| 279 | 
         
            -
            image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
         
     | 
| 280 | 
         
            -
            image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
         
     | 
| 281 | 
         
            -
            image = Image.fromarray(image)
         
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 284 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-normal",
         
     | 
| 285 | 
         
            -
            )
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 288 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 289 | 
         
            -
            )
         
     | 
| 290 | 
         
            -
            pipe.to('cuda')
         
     | 
| 291 | 
         
            -
             
     | 
| 292 | 
         
            -
            image = pipe("cute toy", image).images[0]
         
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
            image.save('images/toy_normal_out.png')
         
     | 
| 295 | 
         
            -
            ```
         
     | 
| 296 | 
         
            -
             
     | 
| 297 | 
         
            -
            
         
     | 
| 298 | 
         
            -
             
     | 
| 299 | 
         
            -
            
         
     | 
| 300 | 
         
            -
             
     | 
| 301 | 
         
            -
            
         
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
            ## Scribble
         
     | 
| 304 | 
         
            -
             
     | 
| 305 | 
         
            -
            Install the additional controlnet models package.
         
     | 
| 306 | 
         
            -
             
     | 
| 307 | 
         
            -
            ```sh
         
     | 
| 308 | 
         
            -
            $ pip install git+https://github.com/patrickvonplaten/human_pose.git
         
     | 
| 309 | 
         
            -
            ```
         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
            ```py
         
     | 
| 312 | 
         
            -
            from PIL import Image
         
     | 
| 313 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 314 | 
         
            -
            import torch
         
     | 
| 315 | 
         
            -
            from human_pose import HEDdetector
         
     | 
| 316 | 
         
            -
             
     | 
| 317 | 
         
            -
            hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
         
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
            image = Image.open('images/bag.png')
         
     | 
| 320 | 
         
            -
             
     | 
| 321 | 
         
            -
            image = hed(image, scribble=True)
         
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 324 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-scribble",
         
     | 
| 325 | 
         
            -
            )
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 328 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 329 | 
         
            -
            )
         
     | 
| 330 | 
         
            -
            pipe.to('cuda')
         
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
            image = pipe("bag", image).images[0]
         
     | 
| 333 | 
         
            -
             
     | 
| 334 | 
         
            -
            image.save('images/bag_scribble_out.png')
         
     | 
| 335 | 
         
            -
            ```
         
     | 
| 336 | 
         
            -
             
     | 
| 337 | 
         
            -
            
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
            
         
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
            
         
     | 
| 342 | 
         
            -
             
     | 
| 343 | 
         
            -
            ## HED Boundary
         
     | 
| 344 | 
         
            -
             
     | 
| 345 | 
         
            -
            Install the additional controlnet models package.
         
     | 
| 346 | 
         
            -
             
     | 
| 347 | 
         
            -
            ```sh
         
     | 
| 348 | 
         
            -
            $ pip install git+https://github.com/patrickvonplaten/human_pose.git
         
     | 
| 349 | 
         
            -
            ```
         
     | 
| 350 | 
         
            -
             
     | 
| 351 | 
         
            -
            ```py
         
     | 
| 352 | 
         
            -
            from PIL import Image
         
     | 
| 353 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 354 | 
         
            -
            import torch
         
     | 
| 355 | 
         
            -
            from human_pose import HEDdetector
         
     | 
| 356 | 
         
            -
             
     | 
| 357 | 
         
            -
            hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
         
     | 
| 358 | 
         
            -
             
     | 
| 359 | 
         
            -
            image = Image.open('images/man.png')
         
     | 
| 360 | 
         
            -
             
     | 
| 361 | 
         
            -
            image = hed(image)
         
     | 
| 362 | 
         
            -
             
     | 
| 363 | 
         
            -
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 364 | 
         
            -
                "fusing/stable-diffusion-v1-5-controlnet-hed",
         
     | 
| 365 | 
         
            -
            )
         
     | 
| 366 | 
         
            -
             
     | 
| 367 | 
         
            -
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 368 | 
         
            -
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
         
     | 
| 369 | 
         
            -
            )
         
     | 
| 370 | 
         
            -
            pipe.to('cuda')
         
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
            image = pipe("oil painting of handsome old man, masterpiece", image).images[0]
         
     | 
| 373 | 
         
            -
             
     | 
| 374 | 
         
            -
            image.save('images/man_hed_out.png')
         
     | 
| 375 | 
         
            -
            ```
         
     | 
| 376 | 
         
            -
             
     | 
| 377 | 
         
            -
            
         
     | 
| 378 | 
         
            -
             
     | 
| 379 | 
         
            -
            
         
     | 
| 380 | 
         | 
| 381 | 
         
            -
             
     | 
| 
         | 
|
| 18 | 
         
             
            The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
         
     | 
| 19 | 
         | 
| 20 | 
         
             
            Some of the additional conditionings can be extracted from images via additional models. We extracted these
         
     | 
| 21 | 
         
            +
            additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/controlnet_aux.git).
         
     | 
| 22 | 
         | 
| 23 | 
         
             
            ## Canny edge detection
         
     | 
| 24 | 
         | 
| 25 | 
         
            +
            ### Diffusers
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
             
            Install opencv
         
     | 
| 28 | 
         | 
| 29 | 
         
             
            ```sh
         
     | 
| 
         | 
|
| 33 | 
         
             
            ```python
         
     | 
| 34 | 
         
             
            import cv2
         
     | 
| 35 | 
         
             
            from PIL import Image
         
     | 
| 36 | 
         
            +
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
         
     | 
| 37 | 
         
             
            import torch
         
     | 
| 38 | 
         
             
            import numpy as np
         
     | 
| 39 | 
         | 
| 
         | 
|
| 49 | 
         
             
            image = Image.fromarray(image)
         
     | 
| 50 | 
         | 
| 51 | 
         
             
            controlnet = ControlNetModel.from_pretrained(
         
     | 
| 52 | 
         
            +
                "fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16
         
     | 
| 53 | 
         
             
            )
         
     | 
| 54 | 
         | 
| 55 | 
         
             
            pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 56 | 
         
            +
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
         
     | 
| 57 | 
         
             
            )
         
     | 
| 
         | 
|
| 58 | 
         | 
| 59 | 
         
            +
            pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            # Remove if you do not have xformers installed
         
     | 
| 62 | 
         
            +
            # see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers
         
     | 
| 63 | 
         
            +
            # for installation instructions
         
     | 
| 64 | 
         
            +
            pipe.enable_xformers_memory_efficient_attention()
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            pipe.enable_model_cpu_offload()
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            image = pipe("bird", image, num_inference_steps=20).images[0]
         
     | 
| 69 | 
         | 
| 70 | 
         
             
            image.save('images/bird_canny_out.png')
         
     | 
| 71 | 
         
             
            ```
         
     | 
| 
         | 
|
| 76 | 
         | 
| 77 | 
         
             
            
         
     | 
| 78 | 
         | 
| 79 | 
         
            +
            ### Training
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 80 | 
         | 
| 81 | 
         
            +
            The canny edge model was trained on 3M edge-image, caption pairs. The model was trained for 600 GPU-hours with Nvidia A100 80G using Stable Diffusion 1.5 as a base model. 
         
     | 
    	
        controlnet_utils.py
    DELETED
    
    | 
         @@ -1,40 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            def ade_palette():
         
     | 
| 2 | 
         
            -
                """ADE20K palette that maps each class to RGB values."""
         
     | 
| 3 | 
         
            -
                return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
         
     | 
| 4 | 
         
            -
                        [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
         
     | 
| 5 | 
         
            -
                        [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
         
     | 
| 6 | 
         
            -
                        [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
         
     | 
| 7 | 
         
            -
                        [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
         
     | 
| 8 | 
         
            -
                        [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
         
     | 
| 9 | 
         
            -
                        [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
         
     | 
| 10 | 
         
            -
                        [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
         
     | 
| 11 | 
         
            -
                        [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
         
     | 
| 12 | 
         
            -
                        [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
         
     | 
| 13 | 
         
            -
                        [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
         
     | 
| 14 | 
         
            -
                        [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
         
     | 
| 15 | 
         
            -
                        [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
         
     | 
| 16 | 
         
            -
                        [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
         
     | 
| 17 | 
         
            -
                        [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
         
     | 
| 18 | 
         
            -
                        [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
         
     | 
| 19 | 
         
            -
                        [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
         
     | 
| 20 | 
         
            -
                        [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
         
     | 
| 21 | 
         
            -
                        [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
         
     | 
| 22 | 
         
            -
                        [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
         
     | 
| 23 | 
         
            -
                        [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
         
     | 
| 24 | 
         
            -
                        [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
         
     | 
| 25 | 
         
            -
                        [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
         
     | 
| 26 | 
         
            -
                        [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
         
     | 
| 27 | 
         
            -
                        [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
         
     | 
| 28 | 
         
            -
                        [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
         
     | 
| 29 | 
         
            -
                        [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
         
     | 
| 30 | 
         
            -
                        [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
         
     | 
| 31 | 
         
            -
                        [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
         
     | 
| 32 | 
         
            -
                        [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
         
     | 
| 33 | 
         
            -
                        [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
         
     | 
| 34 | 
         
            -
                        [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
         
     | 
| 35 | 
         
            -
                        [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
         
     | 
| 36 | 
         
            -
                        [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
         
     | 
| 37 | 
         
            -
                        [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
         
     | 
| 38 | 
         
            -
                        [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
         
     | 
| 39 | 
         
            -
                        [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
         
     | 
| 40 | 
         
            -
                        [102, 255, 0], [92, 0, 255]]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        images/bag.png
    DELETED
    
    | 
         Binary file (462 kB) 
     | 
| 
         | 
    	
        images/bag_scribble.png
    DELETED
    
    | 
         Binary file (11 kB) 
     | 
| 
         | 
    	
        images/bag_scribble_out.png
    DELETED
    
    | 
         Binary file (556 kB) 
     | 
| 
         | 
    	
        images/bird_canny_out.png
    CHANGED
    
    
												 
											 | 
										
												 
									 | 
									
								
    	
        images/chef_pose_out.png
    DELETED
    
    | 
         Binary file (570 kB) 
     | 
| 
         | 
    	
        images/house.png
    DELETED
    
    | 
         Binary file (391 kB) 
     | 
| 
         | 
    	
        images/house_seg.png
    DELETED
    
    | 
         Binary file (3.68 kB) 
     | 
| 
         | 
    	
        images/house_seg_out.png
    DELETED
    
    | 
         Binary file (472 kB) 
     | 
| 
         | 
    	
        images/man.png
    DELETED
    
    | 
         Binary file (773 kB) 
     | 
| 
         | 
    	
        images/man_hed.png
    DELETED
    
    | 
         Binary file (118 kB) 
     | 
| 
         | 
    	
        images/man_hed_out.png
    DELETED
    
    | 
         Binary file (737 kB) 
     | 
| 
         | 
    	
        images/openpose.png
    DELETED
    
    | 
         Binary file (6.55 kB) 
     | 
| 
         | 
    	
        images/pose.png
    DELETED
    
    | 
         Binary file (592 kB) 
     | 
| 
         | 
    	
        images/room.png
    DELETED
    
    | 
         Binary file (637 kB) 
     | 
| 
         | 
    	
        images/room_mlsd.png
    DELETED
    
    | 
         Binary file (9.06 kB) 
     | 
| 
         | 
    	
        images/room_mlsd_out.png
    DELETED
    
    | 
         Binary file (575 kB) 
     | 
| 
         | 
    	
        images/stormtrooper.png
    DELETED
    
    | 
         Binary file (218 kB) 
     | 
| 
         | 
    	
        images/stormtrooper_depth.png
    DELETED
    
    | 
         Binary file (54.1 kB) 
     | 
| 
         | 
    	
        images/stormtrooper_depth_out.png
    DELETED
    
    | 
         Binary file (343 kB) 
     | 
| 
         | 
    	
        images/toy.png
    DELETED
    
    | 
         Binary file (312 kB) 
     | 
| 
         | 
    	
        images/toy_normal.png
    DELETED
    
    | 
         Binary file (90.1 kB) 
     | 
| 
         | 
    	
        images/toy_normal_out.png
    DELETED
    
    | 
         Binary file (231 kB) 
     | 
| 
         |