File size: 4,662 Bytes
101a791 765fa9a 101a791 765fa9a 101a791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
language: en
license: mit
tags:
- text-classification
- intent-classification
- contact-management
- roberta
base_model: roberta-base
datasets:
- custom
model-index:
- name: assistant-bot-intent-classifier
results:
- task:
type: text-classification
name: Intent Classification
metrics:
- type: accuracy
value: 0.95
name: Accuracy
---
# Intent Classifier for Contact Management Assistant Bot
This model is a fine-tuned RoBERTa-base model for intent classification in contact management tasks.
## Model Description
- **Developed by:** Mykyta Kotenko
- **Base Model:** [roberta-base](https://huggingface.co/roberta-base) by Facebook AI
- **Task:** Text Classification (Intent Recognition)
- **Language:** English
- **License:** MIT
## Supported Intents
This model recognizes 15+ different intents for contact management:
### Contact Management
- `add_contact` - Add new contact with name, phone, email, address, birthday
- `edit_phone` - Update contact's phone number
- `edit_email` - Update contact's email address
- `edit_address` - Update contact's address
- `delete_contact` - Delete a contact
- `show_contact` - Show details of a specific contact
- `show_contacts` - List all contacts
- `search_contacts` - Search for contacts
### Notes
- `add_note` - Add a note to a contact
- `show_notes` - Show all notes or notes for a contact
- `edit_note` - Edit an existing note
- `delete_note` - Delete a note
### Tags
- `add_tag` - Add a tag to a contact
- `remove_tag` - Remove a tag from a contact
### Other
- `show_birthdays` - Show upcoming birthdays
- `help` - Show help message
- `exit` - Exit the application
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("kms-engineer/assistant-bot-intent-classifier")
model = AutoModelForSequenceClassification.from_pretrained("kms-engineer/assistant-bot-intent-classifier")
# Create classification pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Classify intent
text = "add contact John Smith 212-555-0123 [email protected]"
result = classifier(text)
print(result)
# Output: [{'label': 'add_contact', 'score': 0.98}]
# More examples
examples = [
"update phone for Sarah to 555-1234",
"show all my contacts",
"delete contact Bob",
"add note for Alice: Call back tomorrow"
]
for text in examples:
result = classifier(text)
print(f"{text} → {result[0]['label']} ({result[0]['score']:.2f})")
```
## Training Details
- **Base Model:** roberta-base
- **Training Dataset:** Custom dataset with contact management commands
- **Learning Rate:** 2e-5
- **Batch Size:** 16
- **Epochs:** 3-5
- **Optimizer:** AdamW
## Intended Use
This model is designed for:
- Contact management applications
- Personal assistant bots
- CRM systems with natural language interface
- Voice-controlled contact management
## Limitations
- Optimized for English language only
- Best performance on contact management domain
- May not generalize well to other domains without fine-tuning
## Example Predictions
```
Input: "add new contact John Doe 555-1234 [email protected]"
Output: add_contact (confidence: 0.99)
Input: "change email for Sarah to [email protected]"
Output: edit_email (confidence: 0.97)
Input: "show me all contacts"
Output: show_contacts (confidence: 0.98)
Input: "delete contact Bob"
Output: delete_contact (confidence: 0.96)
Input: "add tag 'work' to Alice"
Output: add_tag (confidence: 0.95)
```
## Model Architecture
Based on RoBERTa (Robustly Optimized BERT Pretraining Approach):
- 12 transformer layers
- 768 hidden dimensions
- 12 attention heads
- ~125M parameters
## Citation
If you use this model, please cite:
```bibtex
@misc{kotenko2025intentclassifier,
author = {Kotenko, Mykyta},
title = {Intent Classifier for Contact Management Assistant Bot},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/kms-engineer/assistant-bot-intent-classifier}},
note = {Based on RoBERTa by Facebook AI}
}
```
## Acknowledgments
- **Base Model:** RoBERTa by Facebook AI Research
- **Framework:** Hugging Face Transformers
- **Inspiration:** Contact management and personal assistant applications
## License
MIT License - See LICENSE file for details.
This model is a derivative work based on RoBERTa, which is licensed under MIT License by Facebook, Inc.
## Contact
- **Author:** Mykyta Kotenko
- **Repository:** [assistant-bot](https://github.com/kms-engineer/assistant-bot)
- **Issues:** Please report issues on GitHub
|