Text Classification
Safetensors
GLiClass
text classification
nli
sentiment analysis
File size: 11,956 Bytes
cae4892
0187f60
 
 
 
 
 
 
 
 
 
 
8ded969
cae4892
 
0187f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfed11b
303f175
0187f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfed11b
03e8e2a
0187f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee6f5b
 
0187f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668dd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: apache-2.0
datasets:
- BioMike/formal-logic-reasoning-gliclass-2k
- knowledgator/gliclass-v3-logic-dataset
- tau/commonsense_qa
metrics:
- f1
tags:
- text classification
- nli
- sentiment analysis
pipeline_tag: text-classification
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/I9RAQol7giilBHbbf2T7M.png)

# GLiClass: Generalist and Lightweight Model for Sequence Classification

This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.

It can be used for `topic classification`, `sentiment analysis`, and as a reranker in `RAG` pipelines. 

The model was trained on logical tasks to induce reasoning. LoRa adapters were used to fine-tune the model without destroying the previous knowledge.

LoRA parameters:
|               | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) |
|----------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|
| LoRa r               | 512 | 768 | 384 | 384 |
| LoRa α               | 1024 | 1536 | 768 | 768 |
| focal loss α         | 0.7 | 0.7 | 0.7 | 0.7 |
| Target modules       | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" |  "Wqkv", "Wo", "Wi", "linear_1", "linear_2"  |  "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" |  "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" |

GLiClass-V3 Models:
Model name | Size | Params | Average Banchmark | Average Inference Speed (batch size = 1, a6000, examples/s)
|----------|------|--------|-------------------|---------------------------------------------------------|
[gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass‑edge‑v3.0)| 131 MB | 32.7M | 0.4873 | 97.29 |
[gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0)| 606 MB | 151M | 0.5571 | 54.46 |
[gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0)| 1.6 GB | 399M | 0.6082 | 43.80 |
[gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0)| 746 MB | 187M | 0.6556 | 51.61 |
[gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0)| 1.75 GB | 439M | 0.7001 | 25.22 |


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/MvfWyOdG824KWWB4Hy-dG.png)

### How to use:
First of all, you need to install GLiClass library:
```bash
pip install gliclass
pip install -U transformers>=4.48.0
```

Then you need to initialize a model and a pipeline:
```python
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer

model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v3.0")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v3.0", add_prefix_space=True)
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')

text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
 print(result["label"], "=>", result["score"])
```

If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis.
```python
# Initialize model and multi-label pipeline
text = "The cat slept on the windowsill all afternoon"
labels = ["The cat was awake and playing outside."]
results = pipeline(text, labels, threshold=0.0)[0]
print(results)
```

### Benchmarks:
Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.

GLiClass-V3:
| Dataset                    | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) |
|----------------------------|---------|---------|---------|---------|---------|
| CR                         | 0.9398 | 0.9127 | 0.8952 | 0.8902 | 0.8215 |
| sst2                       | 0.9192 | 0.8959 | 0.9330 | 0.8959 | 0.8199 |
| sst5                       | 0.4606 | 0.3376 | 0.4619 | 0.2756 | 0.2823 |
| 20_news_<br>groups         | 0.5958 | 0.4759 | 0.3905 | 0.3433 | 0.2217 |
| spam                       | 0.7584 | 0.6760 | 0.5813 | 0.6398 | 0.5623 |
| financial_<br>phrasebank   | 0.9000 | 0.8971 | 0.5929 | 0.4200 | 0.5004 |
| imdb                       | 0.9366 | 0.9251 | 0.9402 | 0.9158 | 0.8485 |
| ag_news                    | 0.7181 | 0.7279 | 0.7269 | 0.6663 | 0.6645 |
| emotion                    | 0.4506 | 0.4447 | 0.4517 | 0.4254 | 0.3851 |
| cap_sotu                   | 0.4589 | 0.4614 | 0.4072 | 0.3625 | 0.2583 |
| rotten_<br>tomatoes        | 0.8411 | 0.7943 | 0.7664 | 0.7070 | 0.7024 |
| massive                    | 0.5649 | 0.5040 | 0.3905 | 0.3442 | 0.2414 |
| banking                    | 0.5574 | 0.4698 | 0.3683 | 0.3561 | 0.0272 |
| snips                      | 0.9692 | 0.9474 | 0.7707 | 0.5663 | 0.5257 |
| **AVERAGE**                | **0.7193** | **0.6764** | **0.6197** | **0.5577** | **0.4900** |

Previous GLiClass models:
| Dataset                    | [gliclass‑large‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-large-v1.0-lw) | [gliclass‑base‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-base-v1.0-lw) | [gliclass‑modern‑large‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-large-v2.0) | [gliclass‑modern‑base‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-base-v2.0) |
|----------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|
| CR                         | 0.9226 | 0.9097 | 0.9154 | 0.8977 |
| sst2                       | 0.9247 | 0.8987 | 0.9308 | 0.8524 |
| sst5                       | 0.2891 | 0.3779 | 0.2152 | 0.2346 |
| 20_news_<br>groups         | 0.4083 | 0.3953 | 0.3813 | 0.3857 |
| spam                       | 0.3642 | 0.5126 | 0.6603 | 0.4608 |
| financial_<br>phrasebank   | 0.9044 | 0.8880 | 0.3152 | 0.3465 |
| imdb                       | 0.9429 | 0.9351 | 0.9449 | 0.9188 |
| ag_news                    | 0.7559 | 0.6985 | 0.6999 | 0.6836 |
| emotion                    | 0.3951 | 0.3516 | 0.4341 | 0.3926 |
| cap_sotu                   | 0.4749 | 0.4643 | 0.4095 | 0.3588 |
| rotten_<br>tomatoes        | 0.8807 | 0.8429 | 0.7386 | 0.6066 |
| massive                    | 0.5606 | 0.4635 | 0.2394 | 0.3458 |
| banking                    | 0.3317 | 0.4396 | 0.1355 | 0.2907 |
| snips                      | 0.9707 | 0.9572 | 0.8468 | 0.7378 |
| **AVERAGE**                | **0.6518** | **0.6525** | **0.5619** | **0.5366** |


Cross-Encoders:
| Dataset                                   | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) |
|------------------------------------|--------|--------|--------|--------|
| CR                                 | 0.9134 | 0.9051 | 0.9141 | 0.8936 |
| sst2                               | 0.9272 | 0.9176 | 0.8573 | 0.9006 |
| sst5                               | 0.3861 | 0.3848 | 0.4159 | 0.4140 |
| enron_<br>spam                     | 0.5970 | 0.4640 | 0.5040 | 0.3637 |
| financial_<br>phrasebank           | 0.5820 | 0.6690 | 0.4550 | 0.4695 |
| imdb                               | 0.9180 | 0.8990 | 0.9040 | 0.4644 |
| ag_news                            | 0.7710 | 0.7420 | 0.7450 | 0.6016 |
| emotion                            | 0.4840 | 0.4950 | 0.4860 | 0.4165 |
| cap_sotu                           | 0.5020 | 0.4770 | 0.5230 | 0.3823 |
| rotten_<br>tomatoes                | 0.8680 | 0.8600 | 0.8410 | 0.4728 |
| massive                            | 0.5180 | 0.5200 | 0.5200 | 0.3314 |
| banking77                          | 0.5670 | 0.4460 | 0.2900 | 0.4972 |
| snips                              | 0.8340 | 0.7477 | 0.5430 | 0.7227 |
| **AVERAGE**                        | **0.6821** | **0.6559** | **0.6152** | **0.5331** |


Inference Speed:

Each model was tested on examples with 64, 256, and 512 tokens in text and 1, 2, 4, 8, 16, 32, 64, and 128 labels on an a6000 GPU. Then, scores were averaged across text lengths.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/YipDUMZuIqL4f8mWl7IHt.png)

Model  Name / n samples per second per m labels  | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | **Average** |
|---------------------|---|---|---|---|----|----|----|-----|---------|
| [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | 103.81 | 101.01 | 103.50 | 103.50 | 98.36 | 96.77 | 88.76 | 82.64 | **97.29** |
| [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | 56.00 | 55.46 | 54.95 | 55.66 | 54.73 | 54.95 | 53.48 | 50.34 | **54.46** | 
| [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | 46.30 | 46.82 | 46.66 | 46.30 | 43.93 | 44.73 | 42.77 | 32.89 | **43.80** | 
| [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | 49.42 | 50.25 | 40.05 | 57.69 | 57.14 | 56.39 | 55.97 | 45.94 | **51.61** |
| [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | 19.05 | 26.86 | 23.64 | 29.27 | 29.04 | 28.79 | 27.55 | 17.60 | **25.22** |
| [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | 24.55 | 30.40 | 15.38 | 7.62 | 3.77 | 1.87 | 0.94 | 0.47 | **10.63** | 
| [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | 16.82 | 15.82 | 7.93 | 3.98 | 1.99 | 0.99 | 0.49 | 0.25 | **6.03** |
| [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | 50.42 | 39.27 | 19.95 | 9.95 | 5.01 | 2.48 | 1.25 | 0.64 | **16.12** |
| [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | 21.79 | 27.32 | 13.60 | 7.58 | 3.80 | 1.90 | 0.97 | 0.49 | **9.72** |

## Citation
```bibtex
@misc{stepanov2025gliclassgeneralistlightweightmodel,
      title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, 
      author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko},
      year={2025},
      eprint={2508.07662},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.07662}, 
}
```