File size: 11,956 Bytes
cae4892 0187f60 8ded969 cae4892 0187f60 bfed11b 303f175 0187f60 bfed11b 03e8e2a 0187f60 6ee6f5b 0187f60 668dd0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: apache-2.0
datasets:
- BioMike/formal-logic-reasoning-gliclass-2k
- knowledgator/gliclass-v3-logic-dataset
- tau/commonsense_qa
metrics:
- f1
tags:
- text classification
- nli
- sentiment analysis
pipeline_tag: text-classification
---

# GLiClass: Generalist and Lightweight Model for Sequence Classification
This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
It can be used for `topic classification`, `sentiment analysis`, and as a reranker in `RAG` pipelines.
The model was trained on logical tasks to induce reasoning. LoRa adapters were used to fine-tune the model without destroying the previous knowledge.
LoRA parameters:
| | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) |
|----------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|
| LoRa r | 512 | 768 | 384 | 384 |
| LoRa α | 1024 | 1536 | 768 | 768 |
| focal loss α | 0.7 | 0.7 | 0.7 | 0.7 |
| Target modules | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" |
GLiClass-V3 Models:
Model name | Size | Params | Average Banchmark | Average Inference Speed (batch size = 1, a6000, examples/s)
|----------|------|--------|-------------------|---------------------------------------------------------|
[gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass‑edge‑v3.0)| 131 MB | 32.7M | 0.4873 | 97.29 |
[gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0)| 606 MB | 151M | 0.5571 | 54.46 |
[gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0)| 1.6 GB | 399M | 0.6082 | 43.80 |
[gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0)| 746 MB | 187M | 0.6556 | 51.61 |
[gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0)| 1.75 GB | 439M | 0.7001 | 25.22 |

### How to use:
First of all, you need to install GLiClass library:
```bash
pip install gliclass
pip install -U transformers>=4.48.0
```
Then you need to initialize a model and a pipeline:
```python
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v3.0")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v3.0", add_prefix_space=True)
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
print(result["label"], "=>", result["score"])
```
If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis.
```python
# Initialize model and multi-label pipeline
text = "The cat slept on the windowsill all afternoon"
labels = ["The cat was awake and playing outside."]
results = pipeline(text, labels, threshold=0.0)[0]
print(results)
```
### Benchmarks:
Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.
GLiClass-V3:
| Dataset | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) |
|----------------------------|---------|---------|---------|---------|---------|
| CR | 0.9398 | 0.9127 | 0.8952 | 0.8902 | 0.8215 |
| sst2 | 0.9192 | 0.8959 | 0.9330 | 0.8959 | 0.8199 |
| sst5 | 0.4606 | 0.3376 | 0.4619 | 0.2756 | 0.2823 |
| 20_news_<br>groups | 0.5958 | 0.4759 | 0.3905 | 0.3433 | 0.2217 |
| spam | 0.7584 | 0.6760 | 0.5813 | 0.6398 | 0.5623 |
| financial_<br>phrasebank | 0.9000 | 0.8971 | 0.5929 | 0.4200 | 0.5004 |
| imdb | 0.9366 | 0.9251 | 0.9402 | 0.9158 | 0.8485 |
| ag_news | 0.7181 | 0.7279 | 0.7269 | 0.6663 | 0.6645 |
| emotion | 0.4506 | 0.4447 | 0.4517 | 0.4254 | 0.3851 |
| cap_sotu | 0.4589 | 0.4614 | 0.4072 | 0.3625 | 0.2583 |
| rotten_<br>tomatoes | 0.8411 | 0.7943 | 0.7664 | 0.7070 | 0.7024 |
| massive | 0.5649 | 0.5040 | 0.3905 | 0.3442 | 0.2414 |
| banking | 0.5574 | 0.4698 | 0.3683 | 0.3561 | 0.0272 |
| snips | 0.9692 | 0.9474 | 0.7707 | 0.5663 | 0.5257 |
| **AVERAGE** | **0.7193** | **0.6764** | **0.6197** | **0.5577** | **0.4900** |
Previous GLiClass models:
| Dataset | [gliclass‑large‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-large-v1.0-lw) | [gliclass‑base‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-base-v1.0-lw) | [gliclass‑modern‑large‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-large-v2.0) | [gliclass‑modern‑base‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-base-v2.0) |
|----------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|
| CR | 0.9226 | 0.9097 | 0.9154 | 0.8977 |
| sst2 | 0.9247 | 0.8987 | 0.9308 | 0.8524 |
| sst5 | 0.2891 | 0.3779 | 0.2152 | 0.2346 |
| 20_news_<br>groups | 0.4083 | 0.3953 | 0.3813 | 0.3857 |
| spam | 0.3642 | 0.5126 | 0.6603 | 0.4608 |
| financial_<br>phrasebank | 0.9044 | 0.8880 | 0.3152 | 0.3465 |
| imdb | 0.9429 | 0.9351 | 0.9449 | 0.9188 |
| ag_news | 0.7559 | 0.6985 | 0.6999 | 0.6836 |
| emotion | 0.3951 | 0.3516 | 0.4341 | 0.3926 |
| cap_sotu | 0.4749 | 0.4643 | 0.4095 | 0.3588 |
| rotten_<br>tomatoes | 0.8807 | 0.8429 | 0.7386 | 0.6066 |
| massive | 0.5606 | 0.4635 | 0.2394 | 0.3458 |
| banking | 0.3317 | 0.4396 | 0.1355 | 0.2907 |
| snips | 0.9707 | 0.9572 | 0.8468 | 0.7378 |
| **AVERAGE** | **0.6518** | **0.6525** | **0.5619** | **0.5366** |
Cross-Encoders:
| Dataset | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) |
|------------------------------------|--------|--------|--------|--------|
| CR | 0.9134 | 0.9051 | 0.9141 | 0.8936 |
| sst2 | 0.9272 | 0.9176 | 0.8573 | 0.9006 |
| sst5 | 0.3861 | 0.3848 | 0.4159 | 0.4140 |
| enron_<br>spam | 0.5970 | 0.4640 | 0.5040 | 0.3637 |
| financial_<br>phrasebank | 0.5820 | 0.6690 | 0.4550 | 0.4695 |
| imdb | 0.9180 | 0.8990 | 0.9040 | 0.4644 |
| ag_news | 0.7710 | 0.7420 | 0.7450 | 0.6016 |
| emotion | 0.4840 | 0.4950 | 0.4860 | 0.4165 |
| cap_sotu | 0.5020 | 0.4770 | 0.5230 | 0.3823 |
| rotten_<br>tomatoes | 0.8680 | 0.8600 | 0.8410 | 0.4728 |
| massive | 0.5180 | 0.5200 | 0.5200 | 0.3314 |
| banking77 | 0.5670 | 0.4460 | 0.2900 | 0.4972 |
| snips | 0.8340 | 0.7477 | 0.5430 | 0.7227 |
| **AVERAGE** | **0.6821** | **0.6559** | **0.6152** | **0.5331** |
Inference Speed:
Each model was tested on examples with 64, 256, and 512 tokens in text and 1, 2, 4, 8, 16, 32, 64, and 128 labels on an a6000 GPU. Then, scores were averaged across text lengths.

Model Name / n samples per second per m labels | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | **Average** |
|---------------------|---|---|---|---|----|----|----|-----|---------|
| [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | 103.81 | 101.01 | 103.50 | 103.50 | 98.36 | 96.77 | 88.76 | 82.64 | **97.29** |
| [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | 56.00 | 55.46 | 54.95 | 55.66 | 54.73 | 54.95 | 53.48 | 50.34 | **54.46** |
| [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | 46.30 | 46.82 | 46.66 | 46.30 | 43.93 | 44.73 | 42.77 | 32.89 | **43.80** |
| [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | 49.42 | 50.25 | 40.05 | 57.69 | 57.14 | 56.39 | 55.97 | 45.94 | **51.61** |
| [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | 19.05 | 26.86 | 23.64 | 29.27 | 29.04 | 28.79 | 27.55 | 17.60 | **25.22** |
| [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | 24.55 | 30.40 | 15.38 | 7.62 | 3.77 | 1.87 | 0.94 | 0.47 | **10.63** |
| [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | 16.82 | 15.82 | 7.93 | 3.98 | 1.99 | 0.99 | 0.49 | 0.25 | **6.03** |
| [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | 50.42 | 39.27 | 19.95 | 9.95 | 5.01 | 2.48 | 1.25 | 0.64 | **16.12** |
| [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | 21.79 | 27.32 | 13.60 | 7.58 | 3.80 | 1.90 | 0.97 | 0.49 | **9.72** |
## Citation
```bibtex
@misc{stepanov2025gliclassgeneralistlightweightmodel,
title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks},
author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko},
year={2025},
eprint={2508.07662},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2508.07662},
}
``` |