File size: 10,420 Bytes
5b1c701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import List, Optional, Union
import regex as re
import torch
from transformers import AutoTokenizer, UMT5EncoderModel
from diffusers.configuration_utils import FrozenDict
from diffusers.guiders import ClassifierFreeGuidance
from diffusers.utils import is_ftfy_available, logging
from diffusers.modular_pipelines import ModularPipelineBlocks, PipelineState
from diffusers.modular_pipelines.modular_pipeline_utils import (
ComponentSpec,
ConfigSpec,
InputParam,
OutputParam,
)
from diffusers.modular_pipelines import WanModularPipeline
if is_ftfy_available():
import ftfy
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
class WanRTStreamingTextEncoderStep(ModularPipelineBlocks):
model_name = "WanRTStreaming"
@property
def description(self) -> str:
return "Text Encoder step that generate text_embeddings to guide the video generation"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("text_encoder", UMT5EncoderModel),
ComponentSpec("tokenizer", AutoTokenizer),
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 5.0}),
default_creation_method="from_config",
),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return []
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("negative_prompt"),
InputParam(
"prompt_embeds",
type_hint=torch.Tensor,
description="text embeddings used to guide the image generation",
),
InputParam(
"negative_prompt_embeds",
type_hint=torch.Tensor,
description="negative text embeddings used to guide the image generation",
),
InputParam("attention_kwargs"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="text embeddings used to guide the image generation",
),
OutputParam(
"negative_prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="negative text embeddings used to guide the image generation",
),
]
@staticmethod
def check_inputs(block_state):
if block_state.prompt is not None and (
not isinstance(block_state.prompt, str)
and not isinstance(block_state.prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}"
)
@staticmethod
def _get_t5_prompt_embeds(
components,
prompt: Union[str, List[str]],
max_sequence_length: int,
device: torch.device,
):
dtype = components.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
text_inputs = components.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = components.text_encoder(
text_input_ids.to(device), mask.to(device)
).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[
torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))])
for u in prompt_embeds
],
dim=0,
)
return prompt_embeds
@staticmethod
def encode_prompt(
components,
prompt: str,
device: Optional[torch.device] = None,
num_videos_per_prompt: int = 1,
prepare_unconditional_embeds: bool = True,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 512,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of videos that should be generated per prompt
prepare_unconditional_embeds (`bool`):
whether to use prepare unconditional embeddings or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
max_sequence_length (`int`, defaults to `512`):
The maximum number of text tokens to be used for the generation process.
"""
device = device or components._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = WanRTStreamingTextEncoderStep._get_t5_prompt_embeds(
components, prompt, max_sequence_length, device
)
if prepare_unconditional_embeds and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = (
batch_size * [negative_prompt]
if isinstance(negative_prompt, str)
else negative_prompt
)
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = (
WanRTStreamingTextEncoderStep._get_t5_prompt_embeds(
components, negative_prompt, max_sequence_length, device
)
)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
if prepare_unconditional_embeds:
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_videos_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
return prompt_embeds, negative_prompt_embeds
@torch.no_grad()
def __call__(
self, components: WanModularPipeline, state: PipelineState
) -> PipelineState:
# Get inputs and intermediates
block_state = self.get_block_state(state)
self.check_inputs(block_state)
block_state.prepare_unconditional_embeds = False
block_state.device = components._execution_device
# Encode input prompt
(
block_state.prompt_embeds,
block_state.negative_prompt_embeds,
) = WanRTStreamingTextEncoderStep.encode_prompt(
components,
block_state.prompt,
block_state.device,
1,
block_state.prepare_unconditional_embeds,
block_state.negative_prompt,
prompt_embeds=block_state.prompt_embeds,
negative_prompt_embeds=block_state.negative_prompt_embeds,
)
# Add outputs
self.set_block_state(state, block_state)
return components, state
|