--- license: apache-2.0 pipeline_tag: image-classification --- # Skin Cancer Image Classification Model ## Introduction Esse modelo classifica imagens de pele em várias categorias, com o objetivo de detectar lesões cancerígenas ## Model Overview - Arquitetura: Vision Transformer (ViT) - Modelo Pré-treinado: Google's ViT 16x16 treinado no dataset ImageNet21k - Classification Head Modificada: A classification head foi trocado para adaptar melhor o modelo à nova tarefa ## Dataset - Nome do Dataset: Skin Cancer Dataset HAM10000 - Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma ## Training - Optimizer: Adam optimizer with a learning rate of 1e-4 - Loss Function: Cross-Entropy Loss - Batch Size: 32 - Number of Epochs: 5 ## Evaluation Metrics - Train Loss: Average loss over the training dataset - Train Accuracy: Accuracy over the training dataset - Validation Loss: Average loss over the validation dataset - Validation Accuracy: Accuracy over the validation dataset ## Results - Train Loss: 0.1208 - Train Accuracy: 0.9614 - Val Loss: 0.1000 - Val Accuracy: 0.9695