File size: 11,661 Bytes
5c39657 48c90cc 5c39657 5fd3405 48c90cc 5c39657 59823a2 5c39657 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5fd3405 59823a2 5c39657 59823a2 5fd3405 59823a2 5fd3405 5c39657 59823a2 5fd3405 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 5c39657 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 5c39657 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd 59823a2 fb15edd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
datasets:
- leduckhai/MultiMed-ST
- leduckhai/MultiMed
language:
- vi
- en
- de
- fr
- zh
metrics:
- wer
- bleu
- rouge
- bertscore
- ter
base_model:
- openai/whisper-small
- facebook/m2m100_418M
- meta-llama/Llama-3.1-8B
pipeline_tag: translation
license: mit
---
<p align="center">
<img src="./MultiMedST_icon.png" alt="MultiMedST_icon" width="70">
</p>
<h1 align="center">MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation</h1>
<p align="center">
<a href="https://arxiv.org/abs/2504.03546">
<img src="https://img.shields.io/badge/Paper-arXiv%3A2504.03546-b31b1b?logo=arxiv&logoColor=white" alt="Paper">
</a>
<a href="https://huggingface.co/datasets/leduckhai/MultiMed-ST">
<img src="https://img.shields.io/badge/Dataset-HuggingFace-blue?logo=huggingface&logoColor=white" alt="Dataset">
</a>
<a href="https://huggingface.co/leduckhai/MultiMed-ST">
<img src="https://img.shields.io/badge/Models-HuggingFace-green?logo=huggingface&logoColor=white" alt="Models">
</a>
<a href="https://github.com/leduckhai/MultiMed-ST/blob/main/LICENSE">
<img src="https://img.shields.io/badge/License-MIT-yellow" alt="License">
</a>
<a href="https://github.com/leduckhai/MultiMed-ST/stargazers">
<img src="https://img.shields.io/github/stars/leduckhai/MultiMed-ST?style=social" alt="Stars">
</a>
</p>
<p align="center">
<strong>π EMNLP 2025</strong>
</p>
<p align="center">
<b>Khai Le-Duc*</b>, <b>Tuyen Tran*</b>, Bach Phan Tat, Nguyen Kim Hai Bui, Quan Dang, Hung-Phong Tran, Thanh-Thuy Nguyen, Ly Nguyen, Tuan-Minh Phan, Thi Thu Phuong Tran, Chris Ngo, Nguyen X. Khanh**, Thanh Nguyen-Tang**
</p>
<p align="center">
<sub>*Equal contribution | **Equal supervision</sub>
</p>
---
> β **If you find this work useful, please consider starring the repo and citing our paper!**
---
## π§ Abstract
Multilingual speech translation (ST) in the **medical domain** enhances patient care by enabling effective communication across language barriers, alleviating workforce shortages, and improving diagnosis and treatment β especially in global health emergencies.
In this work, we introduce **MultiMed-ST**, the *first large-scale multilingual medical speech translation dataset*, spanning **all translation directions** across **five languages**:
π»π³ Vietnamese, π¬π§ English, π©πͺ German, π«π· French, π¨π³ Traditional & Simplified Chinese.
With **290,000 samples**, *MultiMed-ST* represents:
- π§© the **largest medical MT dataset** to date
- π the **largest many-to-many multilingual ST dataset** across all domains
We also conduct **the most comprehensive ST analysis in the field's history**, to our best knowledge, covering:
- β
Empirical baselines
- π Bilingual vs. multilingual study
- π§© End-to-end vs. cascaded models
- π― Task-specific vs. multi-task seq2seq approaches
- π£οΈ Code-switching analysis
- π Quantitative & qualitative error analysis
All **code, data, and models** are publicly available: π [**GitHub Repository**](https://github.com/leduckhai/MultiMed-ST)
<p align="center">
<img src="./poster_MultiMed-ST_EMNLP2025.png" alt="poster_MultiMed-ST_EMNLP2025" width="85%">
</p>
---
## π§° Repository Overview
This repository provides scripts for:
- ποΈ **Automatic Speech Recognition (ASR)**
- π **Machine Translation (MT)**
- π **Speech Translation (ST)** β both **cascaded** and **end-to-end** seq2seq models
It includes:
- βοΈ Model preparation & fine-tuning
- π Training & inference scripts
- π Evaluation & benchmarking utilities
---
## π¦ Dataset & Models
- **Dataset:** [π€ Hugging Face Dataset](https://huggingface.co/datasets/leduckhai/MultiMed-ST)
- **Fine-tuned Models:** [π€ Hugging Face Models](https://huggingface.co/leduckhai/MultiMed-ST)
You can explore and download all fine-tuned models for **MultiMed-ST** directly from our Hugging Face repository:
<details>
<summary><b>πΉ Whisper ASR Fine-tuned Models (Click to expand) </b></summary>
| Language | Model Link |
|-----------|------------|
| Chinese | [whisper-small-chinese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-chinese) |
| English | [whisper-small-english](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-english) |
| French | [whisper-small-french](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-french) |
| German | [whisper-small-german](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-german) |
| Multilingual | [whisper-small-multilingual](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-multilingual) |
| Vietnamese | [whisper-small-vietnamese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-vietnamese) |
</details>
<details>
<summary><b>πΉ LLaMA-based MT Fine-tuned Models (Click to expand) </b></summary>
| Source β Target | Model Link |
|------------------|------------|
| Chinese β English | [llama_Chinese_English](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Chinese_English) |
| Chinese β French | [llama_Chinese_French](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Chinese_French) |
| Chinese β German | [llama_Chinese_German](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Chinese_German) |
| Chinese β Vietnamese | [llama_Chinese_Vietnamese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Chinese_Vietnamese) |
| English β Chinese | [llama_English_Chinese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_English_Chinese) |
| English β French | [llama_English_French](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_English_French) |
| English β German | [llama_English_German](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_English_German) |
| English β Vietnamese | [llama_English_Vietnamese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_English_Vietnamese) |
| French β Chinese | [llama_French_Chinese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_French_Chinese) |
| French β English | [llama_French_English](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_French_English) |
| French β German | [llama_French_German](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_French_German) |
| French β Vietnamese | [llama_French_Vietnamese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_French_Vietnamese) |
| German β Chinese | [llama_German_Chinese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_German_Chinese) |
| German β English | [llama_German_English](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_German_English) |
| German β French | [llama_German_French](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_German_French) |
| German β Vietnamese | [llama_German_Vietnamese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_German_Vietnamese) |
| Vietnamese β Chinese | [llama_Vietnamese_Chinese](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Vietnamese_Chinese) |
| Vietnamese β English | [llama_Vietnamese_English](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Vietnamese_English) |
| Vietnamese β French | [llama_Vietnamese_French](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Vietnamese_French) |
| Vietnamese β German | [llama_Vietnamese_German](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/llama_Vietnamese_German) |
</details>
<details>
<summary><b>πΉ m2m100_418M MT Fine-tuned Models (Click to expand) </b></summary>
| Source β Target | Model Link |
|------------------|------------|
| de β en | [m2m100_418M-finetuned-de-to-en](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-de-to-en) |
| de β fr | [m2m100_418M-finetuned-de-to-fr](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-de-to-fr) |
| de β vi | [m2m100_418M-finetuned-de-to-vi](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-de-to-vi) |
| de β zh | [m2m100_418M-finetuned-de-to-zh](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-de-to-zh) |
| en β de | [m2m100_418M-finetuned-en-to-de](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-en-to-de) |
| en β fr | [m2m100_418M-finetuned-en-to-fr](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-en-to-fr) |
| en β vi | [m2m100_418M-finetuned-en-to-vi](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-en-to-vi) |
| en β zh | [m2m100_418M-finetuned-en-to-zh](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-en-to-zh) |
| fr β de | [m2m100_418M-finetuned-fr-to-de](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-fr-to-de) |
| fr β en | [m2m100_418M-finetuned-fr-to-en](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-fr-to-en) |
| fr β vi | [m2m100_418M-finetuned-fr-to-vi](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-fr-to-vi) |
| fr β zh | [m2m100_418M-finetuned-fr-to-zh](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-fr-to-zh) |
| vi β de | [m2m100_418M-finetuned-vi-to-de](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-vi-to-de) |
| vi β en | [m2m100_418M-finetuned-vi-to-en](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-vi-to-en) |
| vi β fr | [m2m100_418M-finetuned-vi-to-fr](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-vi-to-fr) |
| vi β zh | [m2m100_418M-finetuned-vi-to-zh](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-vi-to-zh) |
| zh β de | [m2m100_418M-finetuned-zh-to-de](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-zh-to-de) |
| zh β en | [m2m100_418M-finetuned-zh-to-en](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-zh-to-en) |
| zh β fr | [m2m100_418M-finetuned-zh-to-fr](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-zh-to-fr) |
| zh β vi | [m2m100_418M-finetuned-zh-to-vi](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/m2m100_418M-finetuned-zh-to-vi) |
</details>
---
## π¨βπ» Core Developers
1. **Khai Le-Duc**
University of Toronto, Canada
π§ [[email protected]](mailto:[email protected])
π [https://github.com/leduckhai](https://github.com/leduckhai)
2. **Tuyen Tran**: π§ [[email protected]](mailto:[email protected])
Hanoi University of Science and Technology, Vietnam
3. **Nguyen Kim Hai Bui**: π§ [[email protected]](mailto:[email protected])
EΓΆtvΓΆs LorΓ‘nd University, Hungary
## π§Ύ Citation
If you use our dataset or models, please cite:
π [arXiv:2504.03546](https://arxiv.org/abs/2504.03546)
```bibtex
@inproceedings{le2025multimedst,
title={MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation},
author={Le-Duc, Khai and Tran, Tuyen and Tat, Bach Phan and Bui, Nguyen Kim Hai and Anh, Quan Dang and Tran, Hung-Phong and Nguyen, Thanh Thuy and Nguyen, Ly and Phan, Tuan Minh and Tran, Thi Thu Phuong and others},
booktitle={Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing},
pages={11838--11963},
year={2025}
}
|