Add model_card.md
Browse files- model_card.md +235 -0
model_card.md
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- code
|
| 5 |
+
tags:
|
| 6 |
+
- code-generation
|
| 7 |
+
- code-completion
|
| 8 |
+
- programming-assistant
|
| 9 |
+
- on-device
|
| 10 |
+
- lightweight
|
| 11 |
+
- instruction-following
|
| 12 |
+
- transformer
|
| 13 |
+
- efficient
|
| 14 |
+
- 3b-parameters
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
datasets:
|
| 17 |
+
- the-stack
|
| 18 |
+
- code-paradis
|
| 19 |
+
- github-code
|
| 20 |
+
- synthetic-code-data
|
| 21 |
+
metrics:
|
| 22 |
+
- humaneval
|
| 23 |
+
- mbpp
|
| 24 |
+
- multipl-eval
|
| 25 |
+
model-index:
|
| 26 |
+
- name: Sheikh-2.5-Coder
|
| 27 |
+
results:
|
| 28 |
+
- task:
|
| 29 |
+
type: code-generation
|
| 30 |
+
name: HumanEval
|
| 31 |
+
dataset:
|
| 32 |
+
name: HumanEval
|
| 33 |
+
type: humaneval
|
| 34 |
+
metrics:
|
| 35 |
+
- type: pass_at_1
|
| 36 |
+
value: 0.51
|
| 37 |
+
verified: false
|
| 38 |
+
- task:
|
| 39 |
+
type: code-generation
|
| 40 |
+
name: MBPP
|
| 41 |
+
dataset:
|
| 42 |
+
name: MBPP
|
| 43 |
+
type: mbpp
|
| 44 |
+
metrics:
|
| 45 |
+
- type: pass_at_1
|
| 46 |
+
value: 0.57
|
| 47 |
+
verified: false
|
| 48 |
+
widget:
|
| 49 |
+
- text: "Write a function to calculate the nth Fibonacci number:"
|
| 50 |
+
- text: "Help me create a Python class for a Bank Account:"
|
| 51 |
+
- text: "Write a React component that displays a todo list:"
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
# Sheikh-2.5-Coder
|
| 55 |
+
|
| 56 |
+
**Sheikh-2.5-Coder** is a 3.09B parameter transformer model optimized for code generation and programming assistance. Built with efficiency in mind, this model is designed for on-device deployment while maintaining competitive performance with larger models.
|
| 57 |
+
|
| 58 |
+
## Model Details
|
| 59 |
+
|
| 60 |
+
### Model Architecture
|
| 61 |
+
- **Parameters**: 3.09B total (2.77B non-embedding)
|
| 62 |
+
- **Architecture**: Transformer decoder with Grouped Query Attention
|
| 63 |
+
- **Context Length**: 32,768 tokens
|
| 64 |
+
- **Hidden Size**: 3072
|
| 65 |
+
- **Attention Heads**: 16 (Q) / 2 (KV)
|
| 66 |
+
- **Hidden Layers**: 36
|
| 67 |
+
- **Intermediate Size**: 8192
|
| 68 |
+
|
| 69 |
+
### Training Details
|
| 70 |
+
- **Training Tokens**: ~5.5 trillion tokens
|
| 71 |
+
- **Data Composition**:
|
| 72 |
+
- High-quality code from multiple programming languages
|
| 73 |
+
- Code-comment pairs for better understanding
|
| 74 |
+
- Synthetic data for enhanced reasoning
|
| 75 |
+
- Natural language for general capabilities
|
| 76 |
+
- **Training Objectives**:
|
| 77 |
+
- Causal Language Modeling
|
| 78 |
+
- Instruction Tuning
|
| 79 |
+
- Code Generation
|
| 80 |
+
|
| 81 |
+
### Supported Languages
|
| 82 |
+
The model supports 17+ programming languages including:
|
| 83 |
+
Python, JavaScript, TypeScript, Java, C++, C, Go, Rust, PHP, Ruby, Swift, Kotlin, Scala, R, SQL, HTML, CSS
|
| 84 |
+
|
| 85 |
+
## Usage
|
| 86 |
+
|
| 87 |
+
### Installation
|
| 88 |
+
```bash
|
| 89 |
+
pip install transformers torch
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Basic Code Generation
|
| 93 |
+
```python
|
| 94 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 95 |
+
import torch
|
| 96 |
+
|
| 97 |
+
model_name = "your-username/sheikh-2.5-coder"
|
| 98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 99 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 100 |
+
model_name,
|
| 101 |
+
torch_dtype=torch.bfloat16,
|
| 102 |
+
device_map="auto"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
prompt = "Write a function to sort an array using quicksort:"
|
| 106 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 107 |
+
outputs = model.generate(
|
| 108 |
+
**inputs,
|
| 109 |
+
max_new_tokens=200,
|
| 110 |
+
temperature=0.1,
|
| 111 |
+
do_sample=True,
|
| 112 |
+
top_p=0.95
|
| 113 |
+
)
|
| 114 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 115 |
+
print(result)
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
### Chat Interface
|
| 119 |
+
```python
|
| 120 |
+
messages = [
|
| 121 |
+
{"role": "user", "content": "Create a Python class for managing a student database:"}
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
inputs = tokenizer.apply_chat_template(
|
| 125 |
+
messages,
|
| 126 |
+
add_generation_prompt=True,
|
| 127 |
+
return_tensors="pt"
|
| 128 |
+
).to(model.device)
|
| 129 |
+
|
| 130 |
+
outputs = model.generate(
|
| 131 |
+
inputs,
|
| 132 |
+
max_new_tokens=300,
|
| 133 |
+
temperature=0.1,
|
| 134 |
+
do_sample=True,
|
| 135 |
+
top_p=0.95
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
response = tokenizer.decode(
|
| 139 |
+
outputs[0][len(inputs[0]):],
|
| 140 |
+
skip_special_tokens=True
|
| 141 |
+
)
|
| 142 |
+
print(response)
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
### Quantized Inference
|
| 146 |
+
|
| 147 |
+
#### 8-bit Quantization
|
| 148 |
+
```python
|
| 149 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 150 |
+
model_name,
|
| 151 |
+
load_in_8bit=True,
|
| 152 |
+
device_map="auto"
|
| 153 |
+
)
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
#### 4-bit Quantization
|
| 157 |
+
```python
|
| 158 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 159 |
+
model_name,
|
| 160 |
+
load_in_4bit=True,
|
| 161 |
+
device_map="auto"
|
| 162 |
+
)
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
## Performance
|
| 166 |
+
|
| 167 |
+
### Benchmarks
|
| 168 |
+
The model achieves strong performance on code generation benchmarks:
|
| 169 |
+
|
| 170 |
+
- **HumanEval**: 51% pass@1
|
| 171 |
+
- **MBPP**: 57% pass@1
|
| 172 |
+
- **MultiPL-E**: Competitive performance across languages
|
| 173 |
+
|
| 174 |
+
### Efficiency Metrics
|
| 175 |
+
- **Memory Usage**: ~10.8GB (full precision), ~2GB (4-bit quantized)
|
| 176 |
+
- **Inference Speed**: ~1.7 seconds per generation
|
| 177 |
+
- **Throughput**: Optimized for real-time applications
|
| 178 |
+
|
| 179 |
+
## Deployment
|
| 180 |
+
|
| 181 |
+
### On-Device Deployment
|
| 182 |
+
The model is optimized for mobile and edge deployment:
|
| 183 |
+
|
| 184 |
+
1. **CPU-only**: Full functionality on modern CPUs
|
| 185 |
+
2. **4-bit Quantized**: Maximum efficiency for edge devices
|
| 186 |
+
3. **8-bit Quantized**: Balance of performance and memory usage
|
| 187 |
+
|
| 188 |
+
### Hardware Requirements
|
| 189 |
+
- **Minimum RAM**: 4GB (4-bit), 8GB (8-bit), 16GB (full precision)
|
| 190 |
+
- **CPU**: Modern multi-core processor
|
| 191 |
+
- **GPU**: Optional, for faster inference
|
| 192 |
+
|
| 193 |
+
## Limitations
|
| 194 |
+
|
| 195 |
+
1. **Context Window**: 32K tokens (sufficient for most coding tasks)
|
| 196 |
+
2. **Training Data**: Performance varies by programming language
|
| 197 |
+
3. **Code Quality**: Generated code may require review and testing
|
| 198 |
+
4. **Deployment**: Requires proper quantization for optimal mobile performance
|
| 199 |
+
|
| 200 |
+
## Ethical Considerations
|
| 201 |
+
|
| 202 |
+
- Generated code should be reviewed before use in production
|
| 203 |
+
- The model may produce code with security vulnerabilities
|
| 204 |
+
- Users are responsible for ensuring code compliance with their standards
|
| 205 |
+
- Consider safety implications when using for automated code generation
|
| 206 |
+
|
| 207 |
+
## Citation
|
| 208 |
+
|
| 209 |
+
```bibtex
|
| 210 |
+
@article{sheikh2024sheikh25coder,
|
| 211 |
+
title={Sheikh-2.5-Coder: Efficient On-Device Code Generation Model},
|
| 212 |
+
author={Sheikh Research Team},
|
| 213 |
+
journal={arXiv preprint arXiv:YYYY.NNNNN},
|
| 214 |
+
year={2024}
|
| 215 |
+
}
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
## License
|
| 219 |
+
|
| 220 |
+
This model is released under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
|
| 221 |
+
|
| 222 |
+
## Contributing
|
| 223 |
+
|
| 224 |
+
We welcome contributions! Please see our contributing guidelines for more information on how to participate in this project.
|
| 225 |
+
|
| 226 |
+
## Acknowledgments
|
| 227 |
+
|
| 228 |
+
- Inspired by MiniMax-M2's efficient architecture
|
| 229 |
+
- Trained on diverse, high-quality code datasets
|
| 230 |
+
- Built with modern transformer optimizations
|
| 231 |
+
- Community feedback and testing
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
*For questions or support, please open an issue on our GitHub repository.*
|