--- license: apache-2.0 --- This model provides [HuggingFaceTB/SmolVLM-256M-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct) model in tflite format. You can use this model with [AI Edge Cpp Example](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative/examples/cpp). You need to slightly modify this pipeline to support image as input (see COLAB example below). Currently, [AI Edge Torch](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative/examples) vlms not supported on [MediaPipe LLM Inference API](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference), for example [qwen_vl model](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative/examples/qwen_vl), that was used as reference to write SmolVLM-256M-Instruct convertation scripts (coming soon). ## Use the models ### Colab ## Details The model was converted with: ```shell python convert_to_tflite.py --quantize="dynamic_int8"\ --checkpoint_path='./models/SmolVLM-256M-Instruct' --output_path="./models/SmolVLM-256M-Instruct-tflite"\ --mask_as_input=True --prefill_seq_lens=256 --kv_cache_max_len=2048 ```