File size: 11,047 Bytes
84a54bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
language:
- en
license: apache-2.0
library_name: llm2ner
base_model: meta-llama/Llama-3.2-1B
tags:
- ner
- span-detection
- llm
- pytorch
pipeline_tag: token-classification
model_name: ToMMeR-Llama-3.2-1B_L2_R64
source: https://github.com/VictorMorand/llm2ner
paper: https://arxiv.org/abs/2510.19410
---

# ToMMeR-Llama-3.2-1B_L2_R64

ToMMeR is a lightweight probing model extracting emergent mention detection capabilities from early layers representations of any LLM backbone, achieving high Zero Shot recall across a wide set of 13 NER benchmarks.

## Checkpoint Details

| Property  | Value |
|-----------|-------|
| Base LLM  | `meta-llama/Llama-3.2-1B` |
| Layer     | 2|
| #Params   | 264.2K |


# Usage

## Installation

Our code can be installed with pip+git, Please visit the [repository](https://github.com/VictorMorand/llm2ner) for more details.

```bash
pip install git+https://github.com/VictorMorand/llm2ner.git
```

## Fancy Outputs

```python
import llm2ner
from llm2ner import ToMMeR

tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-Llama-3.2-1B_L2_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,) 
tommer.to(llm.device)

text = "Large language models are awesome. While trained on language modeling, they exhibit emergent Zero Shot abilities that make them suitable for a wide range of tasks, including Named Entity Recognition (NER). "

#fancy interactive output
outputs = llm2ner.plotting.demo_inference( text, tommer, llm,
    decoding_strategy="threshold",  # or "greedy" for flat segmentation
    threshold=0.5, # default 50%
    show_attn=True,
)
```
<div>
<span class="tex2jax_ignore"><div class="spans" style="line-height: 2.5; direction: ltr">
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    Large
    <span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 77px;">
    language
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 57px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 57px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 77px;">
    models
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 57px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
</span>
are awesome . While trained on 
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    language
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    modeling
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
</span>
, they exhibit 
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    emergent
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    abilities
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
</span>
that make them suitable for a wide range of 
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    tasks
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span> 
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
, including 
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    Named
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    Entity
    
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
</span>
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    Recognition
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
</span>
( 
<span style="font-weight: bold; display: inline-block; position: relative; height: 60px;">
    NER
<span style="background: lightblue; top: 40px; height: 4px; left: -1px; width: calc(100% + 2px); position: absolute;">
</span>
<span style="background: lightblue; top: 40px; height: 4px; border-top-left-radius: 3px; border-bottom-left-radius: 3px; left: -1px; width: calc(100% + 2px); position: absolute;">
    <span style="background: lightblue; z-index: 10; color: #000; top: -0.5em; padding: 2px 3px; position: absolute; font-size: 0.6em; font-weight: bold; line-height: 1; border-radius: 3px">
        PRED
    </span>
</span>
</span>
) . </div></span>
</div>


## Raw inference
By default, ToMMeR outputs span probabilities, but we also propose built-in options for decoding entities.

- Inputs:
  - tokens (batch, seq): tokens to process, 
  - model: LLM to extract representation from.
- Outputs: (batch, seq, seq) matrix (masked outside valid spans)

```python

tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-Llama-3.2-1B_L2_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,) 
tommer.to(llm.device)

#### Raw Inference
text = ["Large language models are awesome"]
print(f"Input text: {text[0]}")

#tokenize in shape (1, seq_len)
tokens = model.tokenizer(text, return_tensors="pt")["input_ids"].to(device)
# Output raw scores
output = tommer.forward(tokens, model) # (batch_size, seq_len, seq_len)
print(f"Raw Output shape: {output.shape}")

#use given decoding strategy to infer entities
entities = tommer.infer_entities(tokens=tokens, model=model, threshold=0.5, decoding_strategy="greedy")
str_entities = [ model.tokenizer.decode(tokens[0,b:e+1]) for b, e in entities[0]]
print(f"Predicted entities: {str_entities}")

>>> Input text: Large language models are awesome
>>> Raw Output shape: torch.Size([1, 6, 6])
>>> Predicted entities: ['Large language models']
```

Please visit the [repository](https://github.com/VictorMorand/llm2ner) for more details and a demo notebook.

## Evaluation Results

| dataset             |   precision |   recall |     f1 |   n_samples |
|---------------------|-------------|----------|--------|-------------|
| MultiNERD           |      0.1668 |   0.992  | 0.2855 |      154144 |
| CoNLL 2003          |      0.2409 |   0.9643 | 0.3856 |       16493 |
| CrossNER_politics   |      0.2464 |   0.9762 | 0.3935 |        1389 |
| CrossNER_AI         |      0.2506 |   0.9749 | 0.3988 |         879 |
| CrossNER_literature |      0.2688 |   0.9592 | 0.4199 |         916 |
| CrossNER_science    |      0.2774 |   0.9727 | 0.4317 |        1193 |
| CrossNER_music      |      0.3037 |   0.9686 | 0.4625 |         945 |
| ncbi                |      0.0964 |   0.9407 | 0.1748 |        3952 |
| FabNER              |      0.2626 |   0.8111 | 0.3967 |       13681 |
| WikiNeural          |      0.1609 |   0.9911 | 0.2769 |       92672 |
| GENIA_NER           |      0.1886 |   0.9696 | 0.3157 |       16563 |
| ACE 2005            |      0.2514 |   0.4976 | 0.334  |        8230 |
| Ontonotes           |      0.2015 |   0.7659 | 0.319  |       42193 |
| Aggregated          |      0.1803 |   0.943  | 0.3027 |      353250 |
| Mean                |      0.2243 |   0.9065 | 0.3534 |      353250 |

## Citation
If using this model or the approach, please cite the associated paper:
```
@misc{morand2025tommerefficiententity,
      title={ToMMeR -- Efficient Entity Mention Detection from Large Language Models}, 
      author={Victor Morand and Nadi Tomeh and Josiane Mothe and Benjamin Piwowarski},
      year={2025},
      eprint={2510.19410},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2510.19410}, 
}
```

## License
Apache-2.0 (see repository for full text).