--- license: apache-2.0 --- ### Key Features - **Codec-Style Patch Selection**: Instead of sampling sparse frames densely (all patches from few frames), OneVision Encoder samples dense frames sparsely (important patches from many frames). - **3D Rotary Position Embedding**: Uses a 4:6:6 split for temporal, height, and width dimensions to capture spatiotemporal relationships. #### Downstream Tasks - Video benchmarks: MVBench, VideoMME, Perception Test - Image understanding: DocVQA, ChartQA, OCRBench - Action recognition: SSv2, UCF101, Kinetics ### Quick Start > [!IMPORTANT] > **Transformers Version Compatibility:** > > - ✅ **`transformers==4.57.3`** (Recommended): Works with `AutoModel.from_pretrained()` > - ⚠️ **`transformers>=5.0.0`**: Not currently supported. We are actively working on a fix. > **Note:** This model supports native resolution input. For optimal performance: > > - **Image**: 448×448 resolution (pre-trained) > - **Video**: 224×224 resolution with 256 tokens per frame (pre-trained) ```python from transformers import AutoModel, AutoImageProcessor from PIL import Image import torch # Load model and preprocessor model = AutoModel.from_pretrained( "lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True, attn_implementation="flash_attention_2" ).to("cuda").eval() preprocessor = AutoImageProcessor.from_pretrained( "lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True ) # Image inference: [B, C, H, W] image = Image.open("path/to/your/image.jpg") # Replace with your image path pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"].to("cuda") with torch.no_grad(): outputs = model(pixel_values) # outputs.last_hidden_state: [B, num_patches, hidden_size] # outputs.pooler_output: [B, hidden_size] # Video inference: [B, C, T, H, W] with patch_positions num_frames, target_frames = 16, 64 patch_size = 14 # Load video frames and preprocess each frame (replace with your video frame paths) frames = [Image.open(f"path/to/frame_{i}.jpg") for i in range(num_frames)] video_pixel_values = preprocessor(images=frames, return_tensors="pt")["pixel_values"] # Reshape from [T, C, H, W] to [B, C, T, H, W] video = video_pixel_values.unsqueeze(0).permute(0, 2, 1, 3, 4).to("cuda") # Build patch_positions for temporal sampling: [B, num_frames * frame_tokens, 3] frame_pos = torch.linspace(0, target_frames - 1, num_frames).long().cuda() # [T] grid_h, grid_w = video.shape[-2] // patch_size, video.shape[-1] // patch_size # patch grid frame_tokens = grid_h * grid_w t_positions = frame_pos[:, None].repeat(1, frame_tokens).reshape(-1) # [T * frame_tokens] h_positions = torch.arange(grid_h, device="cuda").repeat_interleave(grid_w) h_positions = h_positions.repeat(num_frames) # [T * frame_tokens] w_positions = torch.arange(grid_w, device="cuda").repeat(grid_h) w_positions = w_positions.repeat(num_frames) # [T * frame_tokens] patch_positions = torch.stack([t_positions, h_positions, w_positions], dim=-1).unsqueeze(0) # patch_positions example (256 tokens per frame, 16x16 patch grid): # Each row is [t, h, w]. # First 4 patches of frame 0 (t=0): # patch_positions[0, 0:4, :] -> [[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3]] # First 4 patches of frame 1 (t=4): # patch_positions[0, 256:260, :] -> [[4, 0, 0], [4, 0, 1], [4, 0, 2], [4, 0, 3]] with torch.no_grad(): outputs = model(video, patch_positions=patch_positions) ``` ### Loading from Source Code ```bash git clone https://github.com/EvolvingLMMs-Lab/OneVision-Encoder.git cd OneVision-Encoder pip install -e . ``` ```python from onevision_encoder import OneVisionEncoderModel, OneVisionEncoderConfig from transformers import AutoImageProcessor model = OneVisionEncoderModel.from_pretrained( "lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True, attn_implementation="flash_attention_2" ).to("cuda").eval() preprocessor = AutoImageProcessor.from_pretrained( "lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True ) ``` ### LMM Probe Results Training on a mixed dataset of 740K samples from LLaVA-OneVision and 800K samples from LLaVA-Video SFT. The training pipeline proceeds directly to Stage 2 fine-tuning. We adopt a streamlined native-resolution strategy inspired by LLaVA-OneVision: when the input frame resolution matches the model's native input size, it is fed directly—without tiling or cropping—to evaluate the ViT's native resolution capability.

LMM Probe Results

### Model Card | Property | Value | | ----------------------------- | --------------------------------- | | **Model Type** | Vision Transformer (ViT) | | **Architecture** | HEVC-Style Vision Transformer | | **Hidden Size** | 1024 | | **Intermediate Size** | 4096 | | **Number of Layers** | 24 | | **Number of Attention Heads** | 16 | | **Patch Size** | 14 | | **Image Resolution** | 448×448 (pre-trained) | | **Video Resolution** | 224×224 with 256 tokens per frame | | **Positional Encoding** | 3D RoPE (4:6:6 split for T:H:W) | | **Normalization** | Layer Normalization | | **Activation Function** | GELU | | **License** | Apache 2.0 |