File size: 17,811 Bytes
03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 381249b 967d049 381249b 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 03e6f76 967d049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
---
base_model:
- DeepGlint-AI/rice-vit-large-patch14-560
- Qwen/Qwen3-4B-Instruct-2507
datasets:
- lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M
- lmms-lab/LLaVA-OneVision-1.5-Insturct-Data
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
---
# LLaVA-OneVision-1.5: Fully Open-Source State-of-the-Art VLM Model
This is the official Hugging Face model card for **LLaVA-OneVision-1.5**, a novel family of Large Multimodal Models (LMMs) presented in the paper [LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training](https://huggingface.co/papers/2509.23661).
π [Paper](https://huggingface.co/papers/2509.23661) | π» [Code](https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5) | π [Project Page](https://huggingface.co/collections/lmms-lab/llava-onevision-15-68d385fe73b50bd22de23713) | π [Demo](https://huggingface.co/spaces/lmms-lab/LLaVA-OneVision-1.5)
# β¨ Key Features
**LLaVA-OneVision-1.5** introduces a novel family of **fully open-source** Large Multimodal Models (LMMs) that achieves **state-of-the-art performance** with substantially **lower cost** through training on **native resolution** images.
1. **Superior Performance**
A family of fully open-source large multimodal models demonstrating **superior performance** across multiple multimodal benchmarks, **outperforming Qwen2.5-VL** in most evaluation tasks.
2. **High-Quality Data at Scale**
Meticulously curated **mid-training and SFT data** with rigorous filtering and quality control.
- Concept-balanced, highly diverse, high-quality caption data
- Comprehensive instruction fine-tuning data covering a wide range of tasks
3. **Ultra-Efficient Training Framework**
Complete end-to-end training framework designed for maximum efficiency:
- **$16K total budget** for full model training
- Built on **MegatronLM** with support for **MoE**, **FP8**, and **long sequence parallelization**
- Optimized codebase for cost-effective scaling
4. **Fully Open Framework** for community access and reproducibility:
- β
High-quality mid-training & SFT data
- β
Complete training framework & code
- β
Training recipes & configurations
- β
Base & instruct model checkpoints
- β
Comprehensive training logs & metrics
## Models
| Model | HF Link | Training Log |
|---|---|---|
| LLaVA-OV-1.5-4B-Instruct | [π€ HF / 4B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct) | [π Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard) |
| LLaVA-OV-1.5-8B-Instruct | [π€ HF / 8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct) | [π Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct/tensorboard) |
## Dataset
| Description | Link |
|---|---|
| Mid-training data for LLaVA-OneVision-1.5 | [π€ Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M) |
| SFT data for LLaVA-OneVision-1.5 | [π€ Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Insturct-Data) |
## Evaluation Results
All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).

## Quick Start with HuggingFace
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
```python
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct"
# default: Load the model on the available device(s)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)
# default processer
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
## Evaluation
```
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \
--model=llava_onevision1_5 \
--model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \
--tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \
--batch_size=1
```
## Quick Start Guide
### 1.π³ Docker (Recommended)
We strongly recommend using the docker environment for a seamless experience. The following instructions are tailored for the A100 80GB GPU environment.
```bash
# Clone repository
git clone https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5.git
cd LLaVA-OneVision-1.5
docker build -t llava_megatron:25.04 .
# Run container with -w to set working directory directly to the mounted volume
docker run -it --gpus all \
--ipc host --net host --privileged --cap-add IPC_LOCK \
--ulimit memlock=-1 --ulimit stack=67108864 --rm \
-v $(pwd):/workspace/LLaVA-OneVision-1.5 \
-w /workspace/LLaVA-OneVision-1.5 \
--name "llava_megatron_container" \
llava_megatron:25.04 /bin/bash
```
### 2. Checkpoint and Format Conversion
You have two options to get started with LLaVA-OneVision-1.5-stage-0:
#### Option 1: Download pre-trained model from HuggingFace
Download our `LLaVA-OneVision-1.5-4B-stage0` model directly from [HuggingFace](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-stage0).
#### Option 2: Merge initial weights yourself
Alternatively, you can merge the initial weights from the original ViT and LLM:
```bash
python ds/merge_model.py \
--vit_path DeepGlint-AI/rice-vit-large-patch14-560 \
--llm_path Qwen/Qwen3-4B-Instruct-2507 \
--output LLaVA-OneVision-1.5-4B-stage0
```
Note: When merging weights, the adapter component will be initialized with default values.
Convert the model from HuggingFace format to Megatron format:
```bash
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 bash examples/llava_ov_1_5/convert/convert_4b_hf_to_mcore.sh \
LLaVA-OneVision-1.5-4B-stage0 \
LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
1 1
```
### 3. Stage 1 Alignment-Training
Download LLaVA from [LLaVA-558K-Webdataset](https://huggingface.co/datasets/lmms-lab/LLaVA-558K-Webdataset).
```bash
# ============================================================
# Required environment variables:
# AIAK_TRAINING_PATH Root directory of the AIAK-Training-LLM project
# DATA_PATH Directory with WebDataset shards (.tar) for pretraining
# TOKENIZER_PATH Hugging Face tokenizer directory
# CHECKPOINT_PATH Megatron-formatted checkpoint directory (e.g., mcore TP1/PP1)
# SAVE_CKPT_PATH Output directory for saving training checkpoints
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-558K-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
bash examples/llava_ov_1_5/quick_start/stage_1_alignment_llava_ov_4b.sh
```
### 4. Stage 1.5 Mid-Training
Download our lightweight packed subset from [LLaVA-OneVision-1.5-Mid-Training-Quick-Start-3M-Webdataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Mid-Training-Webdataset-Quick-Start-3M).
```bash
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1_alignment_llava_ov_4b/iter_0002500/ \
stage_1_alignment_llava_ov_4b_release 1 1
# ============================================================
# Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-OneVision-1.5-Mid-Training-Quick-Start-3M-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1_alignment_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_1.5_mid_training_llava_ov_4b.sh
```
### 5. Stage 2 Instruct-Training
Download LLaVA-NeXT-780k-webdataset at [LLaVA-NeXT-780K Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-780k-webdataset).
```bash
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1.5_mid_training_llava_ov_4b/iter_0020000/ \
stage_1.5_mid_training_llava_ov_4b_release 1 1
# ============================================================
# # Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-NeXT-780k-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1.5_mid_training_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_2_instruct_llava_ov_4b.sh
```
### 6. Convert mcore to huggingface
```bash
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_hf.sh \
stage_2_instruct_llava_ov_4b/iter_0003500 \
LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct \
1 1
# Copy non-model files (e.g., tokenizer config) to the new directory
find LLaVA-OneVision-1.5-4B-stage0/ -type f -not -iname '*safetensors*' -exec cp {} LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct/ ';'
```
### 7. Evaluation
```bash
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
CUDA_VISIBLE_DEVICES=4,5,6,7 accelerate launch \
--num_processes=4 --main_process_port 12399 -m lmms_eval --model=llava_onevision1_5 --batch_size=1 --tasks=mme \
--model_args=pretrained=/workspace/LLaVA-OneVision-1.5/LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct,max_pixels=3240000
```
## Fully Reproducing Guide
> [!TIP]
> More detailed reproduction steps for the complete process will be provided after the dataset upload is completed.
### Mid-Training
To improve model training efficiency, we implement offline sample packing:
1. Download the [**Mid-Training-85M Dataset**](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M)
2. Pack the data into webdataset format, refer to [**Examples offlinepacking**](examples_offline_packing) and [**Offline Padding-Free Data Packing**](examples/llava_ov_1_5/sample_packing/README.md)
### Instruct
1. Download the [**LLaVA-OneVision-1.5-Insturct-Data**](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Insturct-Data)
2. Convert the data into webdataset format, refer to [**Conversion for Mixed Instruction Data**](docs/sft_data_preprocessing.md)
## Roadmaps
Q4 2025 Key Deliverables:
1. **Ultra-efficient MoE Training**
2. **Full Video Input LLM**
## Contributors
Thanks so much to all of our amazing contributors!
<!-- readme: collaborators,contributors,jiankangdeng/- -start -->
<table>
<tbody>
<tr>
<td align="center">
<a href="https://github.com/fdcp">
<img src="https://avatars.githubusercontent.com/u/15667917?v=4" width="80;" alt="fdcp"/>
<br />
<sub><b>fdcp</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/anxiangsir">
<img src="https://avatars.githubusercontent.com/u/31175974?v=4" width="80;" alt="anxiangsir"/>
<br />
<sub><b>anxiangsir</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/yiyexy">
<img src="https://avatars.githubusercontent.com/u/35927125?v=4" width="80;" alt="yiyexy"/>
<br />
<sub><b>yiyexy</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/wideyard">
<img src="https://avatars.githubusercontent.com/u/101321826?v=4" width="80;" alt="wideyard"/>
<br />
<sub><b>wideyard</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/chengzheng345">
<img src="https://avatars.githubusercontent.com/u/209475443?v=4" width="80;" alt="chengzheng345"/>
<br />
<sub><b>chengzheng345</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/killTheHostage">
<img src="https://avatars.githubusercontent.com/u/16442720?v=4" width="80;" alt="killTheHostage"/>
<br />
<sub><b>killTheHostage</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/mathCrazyy">
<img src="https://avatars.githubusercontent.com/u/20607153?v=4" width="80;" alt="mathCrazyy"/>
<br />
<sub><b>mathCrazyy</b></sub>
</a>
</td>
<td align="center">
<a href="https://github.com/yunglechao">
<img src="https://avatars.githubusercontent.com/u/7631185?v=4" width="80;" alt="yunglechao"/>
<br />
<sub><b>yunglechao</b></sub>
</a>
</td>
</tr>
<tr>
<td align="center">
<a href="https://github.com/RobitYadda">
<img src="https://avatars.githubusercontent.com/u/6811311?v=4" width="80;" alt="RobitYadda"/>
<br />
<sub><b>RobitYadda</b></sub>
</a>
</td>
</tr>
<tbody>
</table>
<!-- readme: collaborators,contributors,jiankangdeng/- -end -->
## Citation
If you find *LLaVA-OneVision-1.5* useful in your research, please consider to cite the following related papers:
```
@inproceedings{LLaVA-OneVision-1.5,
title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
author={An, Xiang and Xie, Yin and Yang, Kaicheng and Zhang, Wenkang and Zhao, Xiuwei and Cheng, Zheng and Wang, Yirui and Xu, Songcen and Chen, Changrui and Wu, Chunsheng and Tan, Huajie and Li, Chunyuan and Yang, Jing and Yu, Jie and Wang, Xiyao and Qin, Bin and Wang, Yumeng and Yan, Zizhen and Feng, Ziyong and Liu, Ziwei and Li, Bo and Deng, Jiankang},
booktitle={arxiv},
year={2025}
}
@inproceedings{xie2025region,
title={Region-based Cluster Discrimination for Visual Representation Learning},
author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
booktitle={ICCV},
year={2025}
}
@article{lillava,
title={LLaVA-OneVision: Easy Visual Task Transfer},
author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
journal={Transactions on Machine Learning Research}
year={2024}
}
```
## Acknowledgement
We extend our sincere gratitude to **AIAK team of the** [**Baige AI computing platform**](https://cloud.baidu.com/product/aihc.html) **from Baidu AI Cloud** for providing the exceptional training framework. The outstanding capabilities of AIAK-Training-LLM and AIAK-Megatron have significantly accelerated our training process with remarkable efficiency. These cutting-edge frameworks have been instrumental in achieving our research goals. `To get full AIAK support, you can contact Baidu Cloud.`
We also thank the maintainers and contributors of the following open-source projects, whose work greatly inspired and supported our research:
- LLaVA: Large Language-and-Vision Assistant β [LLaVA](https://github.com/haotian-liu/LLaVA)
- LLaVA-NeXT: Next-generation multi-modal assistant β [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT)
- lmms-eval: A standardized evaluation framework for Large Multimodal Models β [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval)
- Megatron-LM: Efficient, scalable training for large language models β [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
- Qwen2.5-VL: Strong vision-language foundation model β [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL)
- InternVL: Open-source large-scale vision-language foundation model β [InternVL](https://github.com/OpenGVLab/InternVL)
- Qwen3: Next-generation Qwen LLM β [Qwen](https://github.com/QwenLM/Qwen)
- MetaCLIP: Scalable contrastive pretraining β [MetaCLIP](https://github.com/facebookresearch/MetaCLIP)
- FineVision: Open Data Is All You Need β [FineVision](https://huggingface.co/spaces/HuggingFaceM4/FineVision) |