Image-Text-to-Text
Transformers
TensorBoard
Safetensors
feature-extraction
conversational
custom_code
File size: 13,697 Bytes
03e6f76
 
 
 
967d049
 
 
ef3fa61
03e6f76
967d049
 
03e6f76
967d049
ef3fa61
03e6f76
ef3fa61
03e6f76
 
ef3fa61
 
 
 
 
 
 
d51517f
 
 
 
 
 
 
 
 
 
 
 
ef3fa61
03e6f76
ef3fa61
03e6f76
 
 
ef3fa61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e6f76
381249b
 
 
967d049
 
 
 
381249b
03e6f76
967d049
21cbb17
 
 
 
03e6f76
 
 
 
 
 
967d049
 
03e6f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967d049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e6f76
 
 
 
 
967d049
 
 
 
 
 
03e6f76
 
 
 
 
 
 
 
 
 
 
 
 
 
967d049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
---
base_model:
- DeepGlint-AI/rice-vit-large-patch14-560
- Qwen/Qwen3-4B-Instruct-2507
datasets:
- lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M
- lmms-lab/LLaVA-OneVision-1.5-Insturct-Data
- HuggingFaceM4/FineVision
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
---

<div align="center">

<h1>LLaVA-OneVision-1.5: Fully Open-Source State-of-the-Art VLM Model</h1>


<p>
  <a href="https://huggingface.co/papers/2509.23661">
    <img alt="Paper" src="https://img.shields.io/badge/Paper-b31b1b?style=for-the-badge&logo=arXiv&logoColor=white">
  </a>
  <a href="https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5">
    <img alt="Code" src="https://img.shields.io/badge/Code-181717?style=for-the-badge&logo=github&logoColor=white">
  </a>
  <a href="https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Mid-Training-85M">
    <img alt="Mid-Training Dataset" src="https://img.shields.io/badge/Mid--Training%20Dataset-f59e0b?style=for-the-badge&logo=huggingface&logoColor=white">
  </a>
  <a href="https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Instruct-Data">
    <img alt="Instruct Dataset" src="https://img.shields.io/badge/Instruct%20Dataset-3fb950?style=for-the-badge&logo=huggingface&logoColor=white">
  </a>
  <a href="https://huggingface.co/spaces/lmms-lab/LLaVA-OneVision-1.5">
    <img alt="Demo" src="https://img.shields.io/badge/Demo-1f6feb?style=for-the-badge&logo=huggingface&logoColor=white">
  </a>
  <a href="https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard">
    <img alt="TensorBoard" src="https://img.shields.io/badge/TensorBoard-FF6F00?style=for-the-badge&logo=tensorflow&logoColor=white">
  </a>
</p>

</div>



## Introduction

LLaVA-OneVision-1.5 is a fully open-source family of large multimodal models (LMMs) built to democratize multimodal training. Trained on native‑resolution images, it delivers state‑of‑the‑art performance at substantially lower cost. The project also releases high‑quality pretraining and SFT data, a complete and efficient training framework with recipes and configs, and comprehensive logs to support transparent, reproducible research.
#### **Superior Performance**
  - The model leads on multiple multimodal benchmarks and generally surpasses Qwen2.5-VL.
  - Training on native-resolution images significantly improves its visual understanding.

#### **High-Quality Data at Scale**
  - The pretraining corpus comprises large-scale, concept-balanced, diverse, and high-quality captions curated with strict filtering and quality control.
  - The instruction-tuning dataset is comprehensive and covers a wide range of tasks.

#### **Ultra-Efficient Training Framework**
  - The end-to-end training cost is about $16,000 on A100 GPUs at roughly $0.60 per GPU-hour.
  - The system is built on Megatron-LM with support for MoE, FP8, and long-sequence parallelism, and the codebase is optimized for cost-effective scaling.

#### **Fully Open Framework**
  - The project releases high-quality pretraining and SFT datasets along with the complete training framework, configurations, and recipes.
  - It also provides detailed training logs and metrics to enable reproducibility and community adoption.


## Models

| Model | HF Link | Training Log |
|---|---|---|
| LLaVA-OV-1.5-4B-Instruct | [🤗 HF / 4B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard) |
| LLaVA-OV-1.5-8B-Instruct | [🤗 HF / 8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct/tensorboard) |

## Dataset

| Description        | Link                                                                                                   | Status      |
|--------------------|--------------------------------------------------------------------------------------------------------|-------------|
| LLaVA-OneVision-1.5-Mid-Training-85M   | [🤗HF / Mid-Training 85M](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Mid-Training-85M) | Uploading…  |
| LLaVA-OneVision-1.5-Instruct           | [🤗HF / Instruct-Data](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Instruct-Data)        | Available  |

## Evaluation Results
All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).

![image](https://cdn-uploads.huggingface.co/production/uploads/655c70d331c4978366d4b2e6/J8oBYmQkTOC6pBNLgJn9d.png)

## Quick Start with HuggingFace

Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:

```python
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct"

# default: Load the model on the available device(s)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)

# default processer
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

## Evaluation
```
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git  

accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \
    --model=llava_onevision1_5 \
    --model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \
    --tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \
    --batch_size=1
```



### Mid-Training

To improve model training efficiency, we implement offline sample packing:

1.  Download the [**Mid-Training-85M Dataset**](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M)
2.  Pack the data into webdataset format, refer to [**Examples offlinepacking**](examples_offline_packing) and [**Offline Padding-Free Data Packing**](examples/llava_ov_1_5/sample_packing/README.md)


### Instruct
1.  Download the [**LLaVA-OneVision-1.5-Insturct-Data**](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Insturct-Data)
2.  Convert the data into webdataset format, refer to [**Conversion for Mixed Instruction Data**](docs/sft_data_preprocessing.md)

## Roadmaps

Q4 2025 Key Deliverables:

1.  **Ultra-efficient MoE Training**  
2.  **Full Video Input LLM**  


## Contributors
Thanks so much to all of our amazing contributors!

<!-- readme: collaborators,contributors,jiankangdeng/- -start -->
<table>
	<tbody>
		<tr>
            <td align="center">
                <a href="https://github.com/fdcp">
                    <img src="https://avatars.githubusercontent.com/u/15667917?v=4" width="80;" alt="fdcp"/>
                    <br />
                    <sub><b>fdcp</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/anxiangsir">
                    <img src="https://avatars.githubusercontent.com/u/31175974?v=4" width="80;" alt="anxiangsir"/>
                    <br />
                    <sub><b>anxiangsir</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/yiyexy">
                    <img src="https://avatars.githubusercontent.com/u/35927125?v=4" width="80;" alt="yiyexy"/>
                    <br />
                    <sub><b>yiyexy</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/wideyard">
                    <img src="https://avatars.githubusercontent.com/u/101321826?v=4" width="80;" alt="wideyard"/>
                    <br />
                    <sub><b>wideyard</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/chengzheng345">
                    <img src="https://avatars.githubusercontent.com/u/209475443?v=4" width="80;" alt="chengzheng345"/>
                    <br />
                    <sub><b>chengzheng345</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/killTheHostage">
                    <img src="https://avatars.githubusercontent.com/u/16442720?v=4" width="80;" alt="killTheHostage"/>
                    <br />
                    <sub><b>killTheHostage</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/mathCrazyy">
                    <img src="https://avatars.githubusercontent.com/u/20607153?v=4" width="80;" alt="mathCrazyy"/>
                    <br />
                    <sub><b>mathCrazyy</b></sub>
                </a>
            </td>
            <td align="center">
                <a href="https://github.com/yunglechao">
                    <img src="https://avatars.githubusercontent.com/u/7631185?v=4" width="80;" alt="yunglechao"/>
                    <br />
                    <sub><b>yunglechao</b></sub>
                </a>
            </td>
		</tr>
		<tr>
            <td align="center">
                <a href="https://github.com/RobitYadda">
                    <img src="https://avatars.githubusercontent.com/u/6811311?v=4" width="80;" alt="RobitYadda"/>
                    <br />
                    <sub><b>RobitYadda</b></sub>
                </a>
            </td>
		</tr>
	<tbody>
</table>
<!-- readme: collaborators,contributors,jiankangdeng/- -end -->

## Citation

If you find *LLaVA-OneVision-1.5* useful in your research, please consider to cite the following related papers:

```
@inproceedings{LLaVA-OneVision-1.5,
  title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
  author={An, Xiang and Xie, Yin and Yang, Kaicheng and Zhang, Wenkang and Zhao, Xiuwei and Cheng, Zheng and Wang, Yirui and Xu, Songcen and Chen, Changrui and Wu, Chunsheng and Tan, Huajie and Li, Chunyuan and Yang, Jing and Yu, Jie and Wang, Xiyao and Qin, Bin and Wang, Yumeng and Yan, Zizhen and Feng, Ziyong and Liu, Ziwei and Li, Bo and Deng, Jiankang},
  booktitle={arxiv},  
  year={2025}
 }

@inproceedings{xie2025region,
  title={Region-based Cluster Discrimination for Visual Representation Learning},
  author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
  booktitle={ICCV},
  year={2025}
}

@article{lillava,
  title={LLaVA-OneVision: Easy Visual Task Transfer},
  author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
  journal={Transactions on Machine Learning Research}
  year={2024}
}
```

## Acknowledgement

We extend our sincere gratitude to **AIAK team of the** [**Baige AI computing platform**](https://cloud.baidu.com/product/aihc.html) **from Baidu AI Cloud** for providing the exceptional training framework. The outstanding capabilities of AIAK-Training-LLM and AIAK-Megatron have significantly accelerated our training process with remarkable efficiency. These cutting-edge frameworks have been instrumental in achieving our research goals. `To get full AIAK support, you can contact Baidu Cloud.`


We also thank the maintainers and contributors of the following open-source projects, whose work greatly inspired and supported our research:

- LLaVA: Large Language-and-Vision Assistant — [LLaVA](https://github.com/haotian-liu/LLaVA)
- LLaVA-NeXT: Next-generation multi-modal assistant — [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT)
- lmms-eval: A standardized evaluation framework for Large Multimodal Models — [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval)
- Megatron-LM: Efficient, scalable training for large language models — [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
- Qwen2.5-VL: Strong vision-language foundation model — [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL)
- InternVL: Open-source large-scale vision-language foundation model — [InternVL](https://github.com/OpenGVLab/InternVL)
- Qwen3: Next-generation Qwen LLM — [Qwen](https://github.com/QwenLM/Qwen)
- MetaCLIP: Scalable contrastive pretraining — [MetaCLIP](https://github.com/facebookresearch/MetaCLIP)
- FineVision: Open Data Is All You Need — [FineVision](https://huggingface.co/spaces/HuggingFaceM4/FineVision)