--- base_model: - DeepGlint-AI/rice-vit-large-patch14-560 - Qwen/Qwen3-4B-Instruct-2507 datasets: - lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M - lmms-lab/LLaVA-OneVision-1.5-Insturct-Data - HuggingFaceM4/FineVision library_name: transformers license: apache-2.0 pipeline_tag: image-text-to-text ---
## Introduction LLaVA-OneVision-1.5 is a fully open-source family of large multimodal models (LMMs) built to democratize multimodal training. Trained on native‑resolution images, it delivers state‑of‑the‑art performance at substantially lower cost. The project also releases high‑quality pretraining and SFT data, a complete and efficient training framework with recipes and configs, and comprehensive logs to support transparent, reproducible research. #### **Superior Performance** - The model leads on multiple multimodal benchmarks and generally surpasses Qwen2.5-VL. - Training on native-resolution images significantly improves its visual understanding. #### **High-Quality Data at Scale** - The pretraining corpus comprises large-scale, concept-balanced, diverse, and high-quality captions curated with strict filtering and quality control. - The instruction-tuning dataset is comprehensive and covers a wide range of tasks. #### **Ultra-Efficient Training Framework** - The end-to-end training cost is about $16,000 on A100 GPUs at roughly $0.60 per GPU-hour. - The system is built on Megatron-LM with support for MoE, FP8, and long-sequence parallelism, and the codebase is optimized for cost-effective scaling. #### **Fully Open Framework** - The project releases high-quality pretraining and SFT datasets along with the complete training framework, configurations, and recipes. - It also provides detailed training logs and metrics to enable reproducibility and community adoption. ## Models | Model | HF Link | Training Log | |---|---|---| | LLaVA-OV-1.5-4B-Instruct | [🤗 HF / 4B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard) | | LLaVA-OV-1.5-8B-Instruct | [🤗 HF / 8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct/tensorboard) | ## Dataset | Description | Link | Status | |--------------------|--------------------------------------------------------------------------------------------------------|-------------| | LLaVA-OneVision-1.5-Mid-Training-85M | [🤗HF / Mid-Training 85M](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Mid-Training-85M) | Uploading… | | LLaVA-OneVision-1.5-Instruct | [🤗HF / Instruct-Data](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Instruct-Data) | Available | ## Evaluation Results All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).  ## Quick Start with HuggingFace Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`: ```python from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM from qwen_vl_utils import process_vision_info model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct" # default: Load the model on the available device(s) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True ) # default processer processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Evaluation ``` # pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \ --model=llava_onevision1_5 \ --model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \ --tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \ --batch_size=1 ``` ### Mid-Training To improve model training efficiency, we implement offline sample packing: 1. Download the [**Mid-Training-85M Dataset**](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M) 2. Pack the data into webdataset format, refer to [**Examples offlinepacking**](examples_offline_packing) and [**Offline Padding-Free Data Packing**](examples/llava_ov_1_5/sample_packing/README.md) ### Instruct 1. Download the [**LLaVA-OneVision-1.5-Insturct-Data**](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Insturct-Data) 2. Convert the data into webdataset format, refer to [**Conversion for Mixed Instruction Data**](docs/sft_data_preprocessing.md) ## Roadmaps Q4 2025 Key Deliverables: 1. **Ultra-efficient MoE Training** 2. **Full Video Input LLM** ## Contributors Thanks so much to all of our amazing contributors!|
fdcp |
anxiangsir |
yiyexy |
wideyard |
chengzheng345 |
killTheHostage |
mathCrazyy |
yunglechao |
|
RobitYadda |