Yin-Xie commited on
Commit
05915ac
·
verified ·
1 Parent(s): bf3003e

Upload tokenizer_config.json with huggingface_hub

Browse files
Files changed (1) hide show
  1. tokenizer_config.json +207 -287
tokenizer_config.json CHANGED
@@ -1,288 +1,208 @@
1
- # coding=utf-8
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from transformers.configuration_utils import PretrainedConfig, layer_type_validation
16
- from transformers.modeling_rope_utils import rope_config_validation
17
- from transformers.utils import logging
18
-
19
- logger = logging.get_logger(__name__)
20
-
21
- class RiceConfig(PretrainedConfig):
22
- model_type = "rice_vit"
23
- base_config_key = "vision_config"
24
-
25
- def __init__(
26
- self,
27
- depth=24,
28
- embed_dim=1024,
29
- hidden_size=1024,
30
- hidden_act="gelu",
31
- intermediate_size=4096,
32
- num_heads=16,
33
- in_channels=3,
34
- patch_size=14,
35
- spatial_merge_size=2,
36
- temporal_patch_size=1,
37
- initializer_range=0.02,
38
- layer_norm_eps=1e-05,
39
- text_hidden_size=2560,
40
- **kwargs,
41
- ):
42
- super().__init__(**kwargs)
43
-
44
- self.depth = depth
45
- self.embed_dim = embed_dim
46
- self.hidden_size = hidden_size
47
- self.hidden_act = hidden_act
48
- self.intermediate_size = intermediate_size
49
- self.num_heads = num_heads
50
- self.in_channels = in_channels
51
- self.patch_size = patch_size
52
- self.spatial_merge_size = spatial_merge_size
53
- self.temporal_patch_size = temporal_patch_size
54
- self.initializer_range = initializer_range
55
- self.layer_norm_eps = layer_norm_eps
56
- self.text_hidden_size = text_hidden_size
57
-
58
-
59
- class LLaVAOneVision1_5_TextConfig(PretrainedConfig):
60
- r"""
61
- Args:
62
- vocab_size (`int`, *optional*, defaults to 152064):
63
- Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
64
- `inputs_ids` passed when calling [`Qwen2VLModel`]
65
- hidden_size (`int`, *optional*, defaults to 8192):
66
- Dimension of the hidden representations.
67
- intermediate_size (`int`, *optional*, defaults to 29568):
68
- Dimension of the MLP representations.
69
- num_hidden_layers (`int`, *optional*, defaults to 80):
70
- Number of hidden layers in the Transformer encoder.
71
- num_attention_heads (`int`, *optional*, defaults to 64):
72
- Number of attention heads for each attention layer in the Transformer encoder.
73
- num_key_value_heads (`int`, *optional*, defaults to 8):
74
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
75
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
76
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
77
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
78
- by meanpooling all the original heads within that group. For more details checkout [this
79
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
80
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
81
- The non-linear activation function (function or string) in the decoder.
82
- max_position_embeddings (`int`, *optional*, defaults to 32768):
83
- The maximum sequence length that this model might ever be used with.
84
- initializer_range (`float`, *optional*, defaults to 0.02):
85
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
86
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
87
- The epsilon used by the rms normalization layers.
88
- use_cache (`bool`, *optional*, defaults to `True`):
89
- Whether or not the model should return the last key/values attentions (not used by all models). Only
90
- relevant if `config.is_decoder=True`.
91
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
92
- Whether the model's input and output word embeddings should be tied.
93
- rope_theta (`float`, *optional*, defaults to 1000000.0):
94
- The base period of the RoPE embeddings.
95
- use_sliding_window (`bool`, *optional*, defaults to `False`):
96
- Whether to use sliding window attention.
97
- sliding_window (`int`, *optional*, defaults to 4096):
98
- Sliding window attention (SWA) window size. If not specified, will default to `4096`.
99
- max_window_layers (`int`, *optional*, defaults to 80):
100
- The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
101
- attention_dropout (`float`, *optional*, defaults to 0.0):
102
- The dropout ratio for the attention probabilities.
103
- rope_scaling (`Dict`, *optional*):
104
- Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
105
- and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
106
- accordingly.
107
- Expected contents:
108
- `rope_type` (`str`):
109
- The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
110
- 'llama3'], with 'default' being the original RoPE implementation.
111
- `factor` (`float`, *optional*):
112
- Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
113
- most scaling types, a `factor` of x will enable the model to handle sequences of length x *
114
- original maximum pre-trained length.
115
- `original_max_position_embeddings` (`int`, *optional*):
116
- Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
117
- pretraining.
118
- `attention_factor` (`float`, *optional*):
119
- Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
120
- computation. If unspecified, it defaults to value recommended by the implementation, using the
121
- `factor` field to infer the suggested value.
122
- `beta_fast` (`float`, *optional*):
123
- Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
124
- ramp function. If unspecified, it defaults to 32.
125
- `beta_slow` (`float`, *optional*):
126
- Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
127
- ramp function. If unspecified, it defaults to 1.
128
- `short_factor` (`List[float]`, *optional*):
129
- Only used with 'longrope'. The scaling factor to be applied to short contexts (<
130
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
131
- size divided by the number of attention heads divided by 2
132
- `long_factor` (`List[float]`, *optional*):
133
- Only used with 'longrope'. The scaling factor to be applied to long contexts (<
134
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
135
- size divided by the number of attention heads divided by 2
136
- `low_freq_factor` (`float`, *optional*):
137
- Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
138
- `high_freq_factor` (`float`, *optional*):
139
- Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
140
- image_token_id (`int`, *optional*):
141
- Token index used as placeholder for image embeddings.
142
- video_token_id (`int`, *optional*):
143
- Token index used as placeholder for video embeddings.
144
-
145
- """
146
-
147
- model_type = "LLaVAOneVision1_5_text"
148
- base_config_key = "text_config"
149
- keys_to_ignore_at_inference = ["past_key_values"]
150
- # Default tensor parallel plan for base model `Qwen2VL`
151
- base_model_tp_plan = {
152
- "layers.*.self_attn.q_proj": "colwise",
153
- "layers.*.self_attn.k_proj": "colwise",
154
- "layers.*.self_attn.v_proj": "colwise",
155
- "layers.*.self_attn.o_proj": "rowwise",
156
- "layers.*.mlp.gate_proj": "colwise",
157
- "layers.*.mlp.up_proj": "colwise",
158
- "layers.*.mlp.down_proj": "rowwise",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  }
160
- base_model_pp_plan = {
161
- "embed_tokens": (["input_ids"], ["inputs_embeds"]),
162
- "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
163
- "norm": (["hidden_states"], ["hidden_states"]),
164
- }
165
-
166
- def __init__(
167
- self,
168
- vocab_size=151936,
169
- hidden_size=4096,
170
- intermediate_size=12288,
171
- num_hidden_layers=36,
172
- num_attention_heads=32,
173
- num_key_value_heads=8,
174
- head_dim=128,
175
- hidden_act="silu",
176
- max_position_embeddings=32768,
177
- initializer_range=0.02,
178
- rms_norm_eps=1e-06,
179
- use_cache=True,
180
- tie_word_embeddings=False,
181
- rope_theta=1000000.0,
182
- attention_bias=False,
183
- use_sliding_window=False,
184
- sliding_window=None,
185
- max_window_layers=36,
186
- attention_dropout=0.0,
187
- rope_scaling=None,
188
- layer_types=None,
189
- image_token_id=None,
190
- video_token_id=None,
191
- **kwargs,
192
- ):
193
- self.vocab_size = vocab_size
194
- self.max_position_embeddings = max_position_embeddings
195
- self.hidden_size = hidden_size
196
- self.intermediate_size = intermediate_size
197
- self.num_hidden_layers = num_hidden_layers
198
- self.num_attention_heads = num_attention_heads
199
- self.use_sliding_window = use_sliding_window
200
- self.sliding_window = sliding_window
201
- self.max_window_layers = max_window_layers
202
-
203
- # for backward compatibility
204
- if num_key_value_heads is None:
205
- num_key_value_heads = num_attention_heads
206
-
207
- self.num_key_value_heads = num_key_value_heads
208
- self.head_dim = head_dim
209
- self.hidden_act = hidden_act
210
- self.initializer_range = initializer_range
211
- self.rms_norm_eps = rms_norm_eps
212
- self.use_cache = use_cache
213
- self.rope_theta = rope_theta
214
- self.attention_dropout = attention_dropout
215
- self.rope_scaling = rope_scaling
216
- self.attention_bias = attention_bias
217
- self.tie_word_embeddings = tie_word_embeddings
218
-
219
- # Validate the correctness of rotary position embeddings parameters
220
- # BC: if there is a 'type' field, move it to 'rope_type'.
221
- # and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
222
- # one can set it to "linear"/"dynamic" etc. to have scaled RoPE
223
- # TODO: @raushan update config in the hub
224
- if self.rope_scaling is not None and "type" in self.rope_scaling:
225
- if self.rope_scaling["type"] == "mrope":
226
- self.rope_scaling["type"] = "default"
227
- self.rope_scaling["rope_type"] = self.rope_scaling["type"]
228
- rope_config_validation(self, ignore_keys={"mrope_section"})
229
- self.image_token_id = image_token_id
230
- self.video_token_id = video_token_id
231
-
232
- self.layer_types = layer_types
233
- if self.layer_types is None:
234
- self.layer_types = [
235
- "sliding_attention"
236
- if self.sliding_window is not None and i >= self.max_window_layers
237
- else "full_attention"
238
- for i in range(self.num_hidden_layers)
239
- ]
240
- layer_type_validation(self.layer_types)
241
-
242
- super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
243
-
244
-
245
- class Llavaonevision1_5Config(PretrainedConfig):
246
- r"""
247
- Args:
248
- text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`):
249
- The config object or dictionary of the text backbone.
250
- vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`):
251
- The config object or dictionary of the vision backbone.
252
- image_token_id (`int`, *optional*, defaults to 151655):
253
- The image token index to encode the image prompt.
254
- video_token_id (`int`, *optional*, defaults to 151656):
255
- The video token index to encode the image prompt.
256
- """
257
-
258
- model_type = "llavaonevision1_5"
259
- sub_configs = {"vision_config": RiceConfig, "text_config": LLaVAOneVision1_5_TextConfig}
260
- keys_to_ignore_at_inference = ["past_key_values"]
261
-
262
- def __init__(
263
- self,
264
- text_config=None,
265
- vision_config=None,
266
- image_token_id=151655,
267
- video_token_id=151656,
268
- vocab_size=152064,
269
- **kwargs,
270
- ):
271
- if isinstance(vision_config, dict):
272
- self.vision_config = self.sub_configs["vision_config"](**vision_config)
273
- elif vision_config is None:
274
- self.vision_config = self.sub_configs["vision_config"]()
275
-
276
- if isinstance(text_config, dict):
277
- self.text_config = self.sub_configs["text_config"](**text_config)
278
- elif text_config is None:
279
- # For BC use all kwargs to init `TextConfig`
280
- self.text_config = self.sub_configs["text_config"](**kwargs)
281
-
282
- self.image_token_id = image_token_id
283
- self.video_token_id = video_token_id
284
- self.vocab_size = vocab_size
285
-
286
- super().__init__(**kwargs)
287
-
288
- __all__ = ["Llavaonevision1_5Config", "LLaVAOneVision1_5_TextConfig"]
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
  }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "processor_class": "Qwen2_5_VLProcessor",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }