import torch feats = {} def get_self_attention(module, input, output): feats['self_attn'] = output def process_self_attention(output, batch_size, num_tokens, num_attn_heads, embed_dim, scale, num_global_tokens, ret_self_attn_maps=False): qkv = output.reshape(batch_size, num_tokens, 3, num_attn_heads, embed_dim // num_attn_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) self_attn_maps = attn[:, : , 0, num_global_tokens:] self_attn = self_attn_maps.mean(dim=1) self_attn = self_attn.softmax(dim=-1) if ret_self_attn_maps: return self_attn, self_attn_maps else: return self_attn def get_vit_out(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['vit_out'] = output def get_second_last_out(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['second_last_out'] = output def get_all_out_tokens(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['clip_txt_out_tokens'] = output def get_clip_second_last_dense_out(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['clip_second_last_out'] = output.permute(1,0,2) def get_dinov1_patches(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['dinov1_patches'] = output def get_all_out_tokens(model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): feats['clip_txt_out_tokens'] = output def average_text_tokens(text_embeddings, mask, keep_cls=False, keep_end_seq=False): if not keep_end_seq: mask[torch.arange(mask.shape[0]), mask.sum(dim=1) - 1] = False # excluding end of sequence if not keep_cls: mask[:, 0] = False # excluding CLS token masked_embeddings = text_embeddings * mask.unsqueeze(-1) # shape: [BS, SEQ_LEN, 512] sum_embeddings = masked_embeddings.sum(dim=1) # shape: [BS, 512] valid_elements = mask.sum(dim=1, keepdim=True) # shape: [BS, 1] mean_embeddings = sum_embeddings / valid_elements # shape: [BS, 512] return mean_embeddings