Update README.md
Browse files
README.md
CHANGED
|
@@ -18,7 +18,7 @@ base_model:
|
|
| 18 |
|
| 19 |
Introducing **Lumo-70B-Instruct** - the largest and most advanced AI model ever created for the Solana ecosystem. Built on Meta's groundbreaking LLaMa 3.3 70B Instruct foundation, this revolutionary model represents a quantum leap in blockchain-specific artificial intelligence. With an unprecedented 70 billion parameters and trained on the most comprehensive Solana documentation dataset ever assembled, Lumo-70B-Instruct sets a new standard for developer assistance in the blockchain space.
|
| 20 |
|
| 21 |
-
**(Knowledge cut-off date:
|
| 22 |
|
| 23 |
### 🎯 **Key Features**
|
| 24 |
- **Unprecedented Scale**: First-ever 70B parameter model specifically optimized for Solana development
|
|
@@ -37,7 +37,7 @@ Introducing **Lumo-70B-Instruct** - the largest and most advanced AI model ever
|
|
| 37 |
| **Base Model** | Meta LLaMa 3.3 70B Instruct |
|
| 38 |
| **Fine-Tuning Framework** | HuggingFace Transformers, 4-bit Quantization |
|
| 39 |
| **Dataset Size** | 28,502 expertly curated Q&A pairs |
|
| 40 |
-
| **Context Length** |
|
| 41 |
| **Training Steps** | 10,000 |
|
| 42 |
| **Learning Rate** | 3e-4 |
|
| 43 |
| **Batch Size** | 1 per GPU with 4x gradient accumulation |
|
|
|
|
| 18 |
|
| 19 |
Introducing **Lumo-70B-Instruct** - the largest and most advanced AI model ever created for the Solana ecosystem. Built on Meta's groundbreaking LLaMa 3.3 70B Instruct foundation, this revolutionary model represents a quantum leap in blockchain-specific artificial intelligence. With an unprecedented 70 billion parameters and trained on the most comprehensive Solana documentation dataset ever assembled, Lumo-70B-Instruct sets a new standard for developer assistance in the blockchain space.
|
| 20 |
|
| 21 |
+
**(Knowledge cut-off date: 29th January, 2025)**
|
| 22 |
|
| 23 |
### 🎯 **Key Features**
|
| 24 |
- **Unprecedented Scale**: First-ever 70B parameter model specifically optimized for Solana development
|
|
|
|
| 37 |
| **Base Model** | Meta LLaMa 3.3 70B Instruct |
|
| 38 |
| **Fine-Tuning Framework** | HuggingFace Transformers, 4-bit Quantization |
|
| 39 |
| **Dataset Size** | 28,502 expertly curated Q&A pairs |
|
| 40 |
+
| **Context Length** | 128K tokens |
|
| 41 |
| **Training Steps** | 10,000 |
|
| 42 |
| **Learning Rate** | 3e-4 |
|
| 43 |
| **Batch Size** | 1 per GPU with 4x gradient accumulation |
|