Piotr Zalewski
commited on
Write README
Browse files
README.md
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
| 3 |
+
datasets:
|
| 4 |
+
- KingNish/reasoning-base-20k
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
license: llama3.2
|
| 8 |
+
tags:
|
| 9 |
+
- text-generation-inference
|
| 10 |
+
- transformers
|
| 11 |
+
- llama
|
| 12 |
+
- trl
|
| 13 |
+
- sft
|
| 14 |
+
- reasoning
|
| 15 |
+
- llama-3
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Model Description
|
| 19 |
+
|
| 20 |
+
A work in progress reasoning Llama 3.2 3B model trained on reasoning data.
|
| 21 |
+
|
| 22 |
+
Since I used different training code, it is unknown whether it generates the same kind of reasoning.
|
| 23 |
+
Here is what inference code you should use:
|
| 24 |
+
```py
|
| 25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 26 |
+
|
| 27 |
+
MAX_REASONING_TOKENS = 1024
|
| 28 |
+
MAX_RESPONSE_TOKENS = 512
|
| 29 |
+
|
| 30 |
+
model_name = "piotr25691/thea-3b-25r"
|
| 31 |
+
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
+
|
| 35 |
+
prompt = "Which is greater 9.9 or 9.11 ??"
|
| 36 |
+
messages = [
|
| 37 |
+
{"role": "user", "content": prompt}
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
# Generate reasoning
|
| 41 |
+
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
|
| 42 |
+
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
|
| 43 |
+
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
|
| 44 |
+
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 45 |
+
|
| 46 |
+
# print("REASONING: " + reasoning_output)
|
| 47 |
+
|
| 48 |
+
# Generate answer
|
| 49 |
+
messages.append({"role": "reasoning", "content": reasoning_output})
|
| 50 |
+
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 51 |
+
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
|
| 52 |
+
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
|
| 53 |
+
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
print("ANSWER: " + response_output)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
- **Trained by:** [Piotr Zalewski](https://huggingface.co/piotr25691)
|
| 59 |
+
- **License:** llama3.2
|
| 60 |
+
- **Finetuned from model:** [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
| 61 |
+
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
|
| 62 |
+
|
| 63 |
+
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
|
| 64 |
+
|
| 65 |
+
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
|