
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WEBGEN-AGENT: ENHANCING INTERACTIVE WEB-
SITE GENERATION WITH MULTI-LEVEL FEEDBACK
AND STEP-LEVEL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Agent systems powered by large language models (LLMs) have demonstrated
impressive performance on repository-level code-generation tasks. However, for
tasks such as website codebase generation, which depend heavily on visual effects
and user-interaction feedback, current code agents rely only on simple code execu-
tion for feedback and verification. This approach fails to capture the actual quality
of the generated code. In this paper, we propose WebGen-Agent, a novel website-
generation agent that leverages comprehensive and multi-level visual feedback
to iteratively generate and refine the website codebase. Detailed and expressive
text descriptions and suggestions regarding the screenshots and GUI-agent test-
ing of the websites are generated by a visual language model (VLM), together
with scores that quantify their quality. The screenshot and GUI-agent scores are
further integrated with a backtracking and select-best mechanism, enhancing the
performance of the agent. Utilizing the accurate visual scores inherent in the
WebGen-Agent workflow, we further introduce Step-GRPO with Screenshot and
GUI-Agent Feedback to improve the ability of LLMs to act as the agent-engine
model. By using the screenshot and GUI-agent scores at each step as the reward in
Step-GRPO, we provide a dense and reliable process supervision signal, which ef-
fectively improves the model’s website-generation ability. On the WebGen-Bench
dataset, WebGen-Agent increases the accuracy of Claude 3.5 Sonnet from 26.4%
to 51.9% and its appearance score from 3.0 to 3.9, outperforming the previous
state-of-the-art agent system. Additionally, our training approach increases the
accuracy of Qwen2.5-Coder-7B-Instruct from 34.8% to 45.4% and raises the ap-
pearance score from 3.4 to 3.7.

1 INTRODUCTION

Recent studies on code agents have shown great advancements in repository-level code-generation
tasks, such as fixing GitHub issues (Yang et al., 2024b) and implementing new features (Miserendino
et al., 2025). However, for tasks like website code generation, which depend heavily on visual aes-
thetics and the fluency of user interactions, current code-agent systems fail to fully capture the
actual quality of the generated code base, because they mostly rely on simple code-execution feed-
back. This limitation can lead to various rendering and functional problems in the generated web
applications, such as misaligned components, disharmonious coloring, unresponsive buttons, and
broken links.

To enable the code agent to effectively handle such tasks, we introduce WebGen-Agent, a code-
generation system that generates websites from natural-language instructions that specify appear-
ance and functional requirements, thus offering a highly automated website-development process.
To ensure that the generated websites meet both functional requirements and aesthetic standards,
we leverage both execution feedback and visual feedback to refine the project. Specifically, we
leverage a visual language model (VLM) to assess the visual appeal and aesthetic quality of the cur-
rent website, and a Graphical User Interface (GUI) agent to evaluate the correctness and intended
functionality of the website’s code base, thereby gathering accurate information and providing tar-
geted suggestions and reflections. By iteratively applying this feedback and editing the code base,
WebGen-Agent builds websites with appealing designs and smooth interactive functionality.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

As shown in Fig. 1, WebGen-Agent adopts an iterative, multi-step paradigm in which each step
consists of three actions: code generation, code execution, and feedback gathering. The agent begins
each step by creating and editing files in the code base in a manner similar to Bolt.diy (stackblitz
labs, 2024). During code execution, dependencies are installed and the website service is started. If
execution emits errors, the errors are returned to the agent, which starts the next step to fix them. If
five consecutive error steps occur, the agent backtracks to a previous non-erroneous step.

In the feedback-gathering process, a screenshot of the website is first captured. A VLM then pro-
vides a description and an appearance score based on the screenshot. If the screenshot has room
for improvement, the model supplies suggestions, and the next step is undertaken to implement
them, thereby explicitly refining the website’s visual aesthetics. Otherwise, a GUI-agent session
is initiated to explore the website, which evaluates the functional requirements and generates cor-
responding feedback. If the testing is successful, the task is complete; otherwise, suggestions for
fixing the website are generated, and the agent continues to edit the code base in the next step. At
the end of the task trajectory, the best step is selected on the basis of the screenshot and GUI-agent
scores, and the code base is restored to the state of that step. Based on the pipeline, various models
achieve better performance on WebGen-Bench (Lu et al., 2025b), consistently outperforming other
code agents. Remarkably, Claude-3.5-Sonnet improved its accuracy from 26.4% to 51.9% and its
appearance score from 3.0 to 3.9, outperforming Bolt.diy.

To equip code agents with enhanced reasoning ability, we further propose Step-GRPO with Screen-
shot and GUI-agent Feedback. As shown in Fig. 2, given an instruction, multiple WebGen-Agent
trajectories are generated. Each step is accompanied by a screenshot score and a GUI-agent testing
score, and an accurate and reliable step-level reward can be computed by summing these two scores.
This dual supervision of website appearance and functionality effectively optimizes the model to
generate high-quality website codebases, providing stepwise, process-level guidance for the agent
trajectory. Training a Qwen2.5-Coder-7B-Instruct model with this approach increases the accuracy
from 34.8% to 45.4% and raises the appearance score from 3.4 to 3.7 on WebGen-Bench, greatly
improving both the functionality and the appearance of the generated websites. We name the trained
family of models WebGenAgent-LM.

Our contributions include:

• We propose WebGen-Agent, a code-agent system that leverages screenshots and GUI-agent test-
ing to provide reflection signals and iteratively improve the quality of generated websites.

• We introduce Step-GRPO with Screenshot and GUI-agent Feedback, which uses screenshots and
GUI-agent scores as step-level supervision in the GRPO training process, significantly improving
the performance of smaller open-source models.

• Extensive experiments demonstrate the effectiveness of the proposed method. The system in-
creases the accuracy of Claude-3.5-Sonnet from 26.4% to 51.9% and its appearance score
from 3.0 to 3.9, outperforming Bolt.diy. And our training approach increases the accuracy of
Qwen2.5-Coder-7B-Instruct from 34.8% to 45.4% and raises the appearance score from 3.4 to
3.7.

2 METHOD

In this section, we first introduce WebGen-Agent, a novel website generation system that leverages
screenshots and GUI-agent testing as reliable feedback to iteratively refine both the appearance and
functionality of the generated website. Building on the dense, reliable visual scores produced by
WebGen-Agent, we then propose Step-GRPO with Screenshot and GUI-Agent Feedback, a method
that uses these scores to provide process supervision during GRPO training. This approach signifi-
cantly enhances the model’s ability to generate high-quality websites.

2.1 WEBGEN-AGENT WORKFLOW

The WebGen-Agent workflow consists of multiple steps: each step includes code generation, code
execution, and feedback gathering. As shown in Fig. 1, the agent trajectory starts from a website
generation instruction (I), denoted as T = [I], and an empty code base C0. The agent-engine
LLM generates code ∆C1 to edit the code base, resulting in C1. Then, the dependencies of the code

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Instruction

𝐶𝑜𝑑𝑒𝑡+1

Error

 𝐶𝑜𝑑𝑒𝑡,𝑖
Web 

Service

Reflection with Execution Feedback

VLM GUI Agent

𝐶𝑜𝑑𝑒𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑡

Screenshot Feedback & GUI Agent Testing Feedback

Next Iteration

Figure 1: Iterative website generation with screenshot- and GUI-agent-based reflection. A back-
tracking and best-step-selection mechanism is applied on the basis of the screenshot and GUI-agent
testing scores.

base are installed, and the website service is started. The code execution output is denoted as O1,
which contains both stdout and stderr. If the dependency installation or service initialization fails,
the output message O1 is returned to the agent as feedback, so that the agent can fix the error in
the next step. If no error occurs, a screenshot of the website is captured and presented to a VLM,
which is requested to provide a description of the screenshot and, if needed, suggestions to improve
the website’s appearance. The prompt for acquiring screenshot feedback is provided in Fig. 4 of
Appendix B. A score of the website appearance based on the screenshot is also generated and,
together with the description and suggestions, composes the screenshot feedback. The feedback can
be denoted as:

Fshot =
〈
Description, Scoreshot, Suggestionsshot

〉
(1)

Fshot is used to reflects the integrity and aesthetics of the website’s appearance. Here, a separate
VLM is used besides the agent-engine LLM to make the system more cost-effective, as we observe
that a relatively small open-source VLM is sufficient for the task, while the code generation requires
an LLM with strong code-generation abilities. We use Qwen2.5-VL-32B-Instruct as the VLM in
our experiments unless stated otherwise. The code execution and screenshot feedback are appended
to the agent trajectory, resulting in T = [I,∆C1,O1,Fshot,1]. Then, the agent judges whether the
website’s appearance is satisfactory based on the trajectory. If it is unsatisfactory, the agent con-
tinues to generate code ∆C2 to improve the website’s appearance. Otherwise, the agent initiates a
GUI-agent testing session, generating an instruction for the GUI-agent to explore various website
functionalities specified in the instruction I, resulting in a GUI-agent testing trajectory. The prompt
used to generate the GUI-agent instructions is shown in Fig.6 of Appendix B. It instructs the model
to produce a GUI-agent instruction that comprehensively checks all website-development require-
ments and includes a one-shot example. As shown in Table7 of Appendix E, a manual inspection
indicates that 98.3% of the sampled instructions achieve high coverage of the requirements. Based
on the GUI-agent testing result, the agent-engine LLM judges whether the testing is successful and
provides a score, denoted as Scoregui. The prompt for acquiring the GUI-agent testing feedback is
provided in Fig. 7 of Appendix B. If the testing result is unsatisfactory, suggestions are also made to
improve the functionality. Thus, the GUI-agent testing feedback can be denoted as

Fgui =
〈
Scoregui, Suggestionsgui

〉
(2)

Fgui is also appended to the trajectory, resulting in T = [I,∆C1,O1,Fshot,1,Fgui,1] =
[I,∆C1,O1,F1]. Here, F1 denotes [Fshot,1,Fgui,1]. In this way, WebGen-Agent continues to im-
prove the appearance and functionality of the website, resulting in a trajectory T , denoted as:

T = [I,∆C1,O1,F1,∆C2,O2,F2, . . . ,∆CK ,OK ,FK ] (3)

The process ends when the website passes the GUI-agent testing, or the maximum iteration number
is reached. During the iteration, at step i ∈ {1, 2, . . . }, the code base state Ci, the edit ∆Ci, together
with the Scoreshot,i and Scoregui,i, are stored in a list. If five consecutive steps contain code execution
errors, a backtracking mechanism is triggered, and the agent trajectory and the code base are returned
to the state at the best previous step. The best previous step is selected by first choosing the steps with
the highest Scoregui, and then among these steps, the ones with the highest Scoreshot are chosen. If
there are still more than one chosen step, then the latest one among them is selected. Considering that
later code edits might not always improve the previous code base, at the end of the agent workflow,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Instruction 𝐶𝑜𝑑𝑒1 𝐶𝑜𝑑𝑒2 𝐶𝑜𝑑𝑒𝐾

VLM GUI Agent

Web

 𝑆𝑒𝑟𝑣𝑖𝑐𝑒2

Web

 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐾

Web

 𝑆𝑒𝑟𝑣𝑖𝑐𝑒1

𝑟1 = 𝑟𝑆𝐻𝑂𝑇,1 + 𝑟𝐺𝑈𝐼,1 𝑟2 = 𝑟𝑆𝐻𝑂𝑇,2 + 𝑟𝐺𝑈𝐼,2 𝑟𝐾 = 𝑟𝑆𝐻𝑂𝑇,𝐾 + 𝑟𝐺𝑈𝐼,𝐾

…

…

Screenshot Feedback & GUI Agent Testing Feedback

R = { r1
(1)

, … , r𝑘1

(1)
, r1

(2)
, … , r𝑘2

(2)
, … }

መ𝐴𝑗
(𝑖)

=
r𝑗

(𝑖)
− mean(R)

std(R)

Step-GRPO

Figure 2: Step-GRPO with Screenshot and GUI-agent Feedback. Multiple WebGen-Agent trajecto-
ries are produced, and the reward for each step is computed by summing the screenshot score and
the GUI-agent score.

the best step among all the steps is selected in the same way as mentioned above. A more detailed
algorithmic presentation can be found in AppendixA.

2.2 STEP-GRPO WITH SCREENSHOT AND GUI-AGENT FEEDBACK

While using strong proprietary models as the agent-engine LLM in WebGen-Agent can produce
high performance, the agent workflow would be more cost-efficient if smaller open-source models
of 7B-8B parameters can be used instead. However, current small open-source language models
still lag behind proprietary models in website code generation. Therefore, we introduce Step-GRPO
with Screenshot and GUI-agent Feedback, leveraging the Scoreshot and Scoregui inherently produced
in the WebGen-Agent workflow to train them with step-level process supervision in GRPO training.

Before the GRPO-based training, we first perform a light supervised fine-tuning (SFT) using ∼ 700
WebGen-Agent trajectories generated by DeepSeek-V3, training for one epoch to serve as a warm
start. Then, Step-GRPO is performed on the fine-tuned model. The Step-GRPO training objective
is as follows:

JGRPO(θ) = E[q∼P (Q),{oi}G
i=1∼πθold

(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]}
,

(4)

Here, q denotes the website generation instruction, and oii = 1G denotes the group of trajec-
tories generated from the instruction q. We remove the KL loss to encourage the model to
more freely adapt its behavior to the reward signals (Qian et al., 2025). oi can be denoted as
[∆C1,O1,F1, . . . ,∆CKi ,OKi ,FKi ]. Â

(i)
j denotes the advantage of o(i) at the j-th step. Differ-

ent from the naive GRPO, which sets the advantages on all tokens in a trajectory to the same value,
the Step-GRPO sets advantages on tokens in different steps to different values. In our work, the
GRPO loss is only applied to the model outputs ∆C1,∆C2, . . . ,∆CK . We denote the reward of all
tokens in the j-th step of o(i) as r(i)j , which is computed by summing the Scoreshot and Scoregui of
that step, generated in the WebGen-Agent workflow:

r
(i)
j = Score(i)shot,j + Score(i)gui,j (5)

The rewards for all steps in the trajectories sampled from q can be written as R =

{{r(1)1 , · · · , r(1)K1
}, . . . , {r(G)

1 , · · · , r(G)
KG

}}. The advantage for step j of the i-th trajectory is com-

puted by standardizing its immediate reward: Â(i)
j =

r
(i)
j −mean(R)

std(R)
. We do not accumulate nor-

malized rewards from future steps as in Shao et al. (2024), because in the website-generation task
Scoreshot and Scoregui directly reflect the quality of the website at the current step, which is more
appropriate for representing the desirability of the current code. The Step-GRPO training process
is illustrated in Fig. 2. This Step-GPPO method, with screenshot and GUI-agent feedback, incorpo-
rates accurate step-level supervision and effectively helps the model learn to generate websites with
an appealing appearance and smooth functionality.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

In this section, we first present the performance of WebGen-Agent on WebGen-Bench using a variety
of proprietary and open-source LLMs, as well as models trained using Step-GRPO with Screenshot
and GUI-agent Feedback. Then, we conduct comprehensive ablation studies on the design choices
in the WebGen-Agent workflow and the Step-GRPO training process.

3.1 MAIN RESULTS

Benchmark Dataset and Baselines. We evaluate WebGen-Agent using WebGen-Bench (Lu et al.,
2025b), a benchmark containing 101 website-generation instructions in natural language and 647
GUI-agent test cases, covering a wide range of web applications. We compare WebGen-Agent
with three other popular code agents: OpenHands (Wang et al., 2024), Aider (Aider-AI, 2024),
and Bolt.diy (stackblitz labs, 2024). We present the results of OpenHands and Aider in combination
with DeepSeek-V3 (Liu et al., 2024), Claude-3.5-Sonnet (Anthropic, 2024), and DeepSeek-R1 (Guo
et al., 2025a), as well as the results of Bolt.diy with DeepSeek-V3 (Liu et al., 2024), Claude-
3.5-Sonnet (Anthropic, 2024), DeepSeek-R1 (Guo et al., 2025a), GPT-4o (Hurst et al., 2024), o3-
mini (OpenAI, 2025b), Qwen2.5-Coder-32B (Hui et al., 2024), Qwen2.5-72B-Instruct (Yang et al.,
2024a), WebGen-LM-7B, WebGen-LM-14B, and WebGen-LM-32B (Lu et al., 2025b). The values
are taken from (Lu et al., 2025b).

Models and WebGen-Agent Inference Settings. We evaluate WebGen-Agent using a wide range
of proprietary and open-source models as the engine LLMs. The proprietary models we tested in-
clude Claude-3.5-Sonnet (Anthropic, 2024), DeepSeek-R1 (Guo et al., 2025a), DeepSeek-V3 (Liu
et al., 2024), o3 (OpenAI, 2025a), Claude-4-Sonnet (Anthropic, 2025), Gemini-2.5-Pro (Comanici
et al., 2025), and Qwen3-Coder-480B-A35B-Instruct (Yang et al., 2025a). The smaller open-source
models we tested include Qwen2.5-Coder-32B-Instruct (Hui et al., 2024), Qwen3-Coder-30B-A3B-
Instruct (Yang et al., 2025a), Qwen2.5-72B-Instruct (Yang et al., 2024a), Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024), and Qwen3-8B (Yang et al., 2025a), as well as 7B and 8B WebGenAgent-
LM models trained with supervised fine-tuning (SFT) and Step-GRPO. The maximum number of
iterations for WebGen-Agent is set to 20, and the model temperature is set to 0.5. Analysis of the
maximum iteration number is presented in Appendix G.

Training Settings. We first train Qwen2.5-Coder-7B-Instruct and Qwen3-8B on seven hundred
WebGen-Agent trajectories collected from DeepSeek-V3 for one epoch with a learning rate of
4e-5 and a batch size of 32, resulting in WebGenAgent-LM-7B-SFT and WebGenAgent-LM-8B-
SFT. This serves as a warm start for the Step-GRPO training. We then train the SFT models
on five hundred website generation instructions randomly sampled from WebGen-Instruct for one
epoch, with each instruction sampled five times, resulting in WebGenAgent-LM-7B-Step-GRPO
and WebGenAgent-LM-8B-Step-GRPO. The training rate is set to 1e-6 and the batch size is 16.
We removed the login requirements in the instructions to make the GUI-agent testing more accurate
and manually filtered out ambiguous or underspecified instructions. We observed that this relatively
small number of high-quality instructions is sufficient for the Step-GRPO training, likely due to the
reliable step-level feedback from screenshots and the GUI-agent. Training on more samples is costly
and does not yield noticeable gains.

Results. The WebGen-Agent test results are presented in Tab. 1. Based on the results, we make
the following observations: (1) WebGen-Agent demonstrates superior performance across various
proprietary models compared to other code agent systems. On Claude-3.5-Sonnet, DeepSeek-R1,
and DeepSeek-V3, WebGen-Agent significantly outperforms OpenHands, Aider, and Bolt.diy when
using the same model. Across all seven proprietary models from five different providers, WebGen-
Agent achieves consistently high performance, demonstrating the generalizability of the method.
Notably, Qwen3-Coder-480B-A35B-Instruct achieves the highest accuracy of 58.2% and an appear-
ance score of 4.3. (2) With 30B–72B sized open-source models, WebGen-Agent also achieves high
performance. On Qwen2.5-Coder-32B-Instruct and Qwen2.5-72B-Instruct, WebGen-Agent outper-
forms the previous state-of-the-art, Bolt.diy, by 22.5% and 22.1% in accuracy, and by 2.2 and 2.0
in appearance scores, respectively. Qwen3-Coder-30B-A3B-Instruct achieves the best performance
among 30B–72B models, with 52.8% accuracy and an appearance score of 4.0. (3) Step-GRPO with

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The performance of WebGen-Agent with various proprietary and open-source models on
WebGen-Bench (Lu et al., 2025b), compared with other code agent systems. The highest Accuracy
and Appearance Score are highlighted in bold.

Test Name Yes Partial No Start
Failed

Accuracy Appearance
Score

OpenHands

Claude-3.5-Sonnet 18.1 8.3 58.6 15.0 22.3 2.6
DeepSeek-R1 8.5 3.4 60.4 27.7 10.2 1.4
DeepSeek-V3 7.4 3.2 73.9 15.5 9.0 1.5

Aider

Claude-3.5-Sonnet 19.9 5.9 42.0 32.1 22.9 1.9
DeepSeek-R1 23.3 8.7 44.5 23.5 27.7 2.7
DeepSeek-V3 12.5 3.1 54.3 30.1 14.1 1.3

Bolt.diy

Claude-3.5-Sonnet 22.6 7.6 64.1 5.7 26.4 3.0
DeepSeek-R1 24.7 6.2 64.3 4.8 27.8 2.5
DeepSeek-V3 18.5 4.5 73.9 3.1 20.8 2.0
GPT-4o 10.4 4.8 64.5 20.4 12.8 1.5
o3-mini 17.9 3.4 40.0 38.6 19.6 1.6
Qwen2.5-Coder-32B 8.2 2.6 81.8 7.4 9.5 1.1
Qwen2.5-72B-Instruct 12.1 3.6 80.7 3.7 13.8 1.4
WebGen-LM-7B 24.9 7.1 68.0 0.0 28.4 2.5
WebGen-LM-14B 25.0 8.7 66.3 0.0 29.4 2.5
WebGen-LM-32B 34.2 8.0 57.8 0.0 38.2 2.8

WebGen-Agent

Proprietary Models

Claude-3.5-Sonnet 45.6 12.7 40.6 1.1 51.9 3.9
DeepSeek-R1 40.2 12.4 45.9 1.5 46.4 3.8
DeepSeek-V3 46.1 13.1 40.6 0.2 52.6 3.8
o3 45.7 11.9 41.6 0.8 51.7 3.5
Gemini-2.5-Pro 44.5 12.7 39.4 3.4 50.9 3.8
Claude-4-Sonnet 48.8 15.3 33.4 2.5 56.5 4.1
Qwen3-Coder-480B-A35B-Inst. 50.5 15.3 34.2 0.0 58.2 4.3

Open-Source Models (30B–72B)

Qwen2.5-Coder-32B-Inst. 26.7 10.5 60.3 2.5 32.0 3.3
Qwen3-Coder-30B-A3B-Inst. 45.7 14.1 40.2 0.0 52.8 4.0
Qwen2.5-72B-Instruct 29.1 13.8 57.2 0.0 35.9 3.4

Open-Source Models (7B–8B)

Qwen2.5-Coder-7B-Inst. 10.0 4.8 60.9 24.3 12.4 1.6
WebGenAgent-LM-7B-SFT 33.8 10.2 56.0 0.0 38.9 3.4
WebGenAgent-LM-7B-Step-GRPO 40.2 10.5 49.3 0.0 45.4 3.7

Qwen3-8B 29.5 9.1 61.4 0.0 34.1 3.2
WebGenAgent-LM-8B-SFT 32.8 11.6 55.6 0.0 38.6 3.4
WebGenAgent-LM-8B-Step-GRPO 37.4 12.1 50.5 0.0 43.4 3.6

Screenshot and GUI-agent Feedback significantly improves the performance of Qwen2.5-Coder-
7B-Instruct and Qwen3-8B. For Qwen2.5-Coder-7B-Instruct, SFT improves accuracy from 12.4%
to 38.9% and the appearance score from 1.6 to 3.4; Step-GRPO further improves accuracy from
38.9% to 45.4% and the appearance score from 3.4 to 3.7. For Qwen3-8B, SFT improves accuracy
from 34.1% to 38.6% and the appearance score from 3.2 to 3.4; Step-GRPO further improves ac-
curacy from 38.6% to 43.4% and the appearance score from 3.4 to 3.6. Qualitative analysis of SFT
and Step-GRPO’s effect in improving the performance is presented in Appendix H. These results
demonstrate the effectiveness of Step-GRPO with Screenshot and GUI-agent Feedback in improving

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Ablation study on the WebGen-Agent workflow. The configuration starts from execution-
only and incrementally adds capabilities.

Test Name Yes Partial No Start
Failed

Accuracy Appearance
Score

Execution-only 39.7 12.4 43.3 4.6 45.9 3.0
Screenshot 41.3 10.7 45.9 2.2 46.6 3.6
Screenshot+GUI-agent 43.0 13.9 41.3 1.9 49.9 3.4
Screenshot+GUI-agent+Backtrack 45.6 11.1 43.1 0.2 51.2 3.7
Screenshot+GUI-agent+Backtrack+Select-best 46.1 13.1 40.6 0.2 52.6 3.8

Table 3: Training–strategy ablation for the Qwen2.5-Coder-7B-Instruct model. The configuration
starts from the raw model and successively introduces supervised fine-tuning (SFT) and various
reinforcement-learning variants.

Test Name Yes Partial No Start
Failed

Accuracy Appearance
Score

No Additional Training 10.0 4.8 60.9 24.3 12.4 1.6

SFT for 1 Epoch 33.8 10.2 56.0 0.0 38.9 3.4
SFT for 2 Epochs 32.1 14.2 53.5 0.2 39.3 3.4

Naive Outcome GRPO 38.0 9.0 53.0 0.0 42.5 3.5
Step-GRPO w/ Cumulative Advantage 32.6 12.2 55.2 0.0 38.7 3.5

Step-GRPO w/ Screenshot Reward Only 34.9 10.5 53.9 0.6 40.2 3.5
Step-GRPO w/ GUI-agent Reward Only 34.8 11.3 53.6 0.3 40.4 3.4

Step-GRPO w/ Screenshot+GUI-agent (ours) 40.2 10.5 49.3 0.0 45.4 3.7

both the functionality and appearance of the generated websites. Categorical results are presented
in Tab. 7 of Appendix F.

3.2 ABLATION STUDIES

Analysis of the WebGen-Agent Workflow. We analyze various design choices in the WebGen-
Agent workflow in Tab.2. We incrementally add the designs, starting from using only the
code execution response messages O (“Execution-only”), then gradually add screenshot feed-
back Fshot (“Screenshot”), GUI-agent testing feedback Fgui (“Screenshot+GUI-agent”), the back-
tracking mechanism (“Screenshot+GUI-agent+Backtrack”), and finally the select-best mechanism
(“Screenshot+GUI-agent+Backtrack+Select-best”), which makes up the full WebGen-Agent work-
flow. As shown in Tab.2, each of the designs yields notable gains in accuracy and appearance. The
GUI-agent testing contributes the largest accuracy gain of 3.3%, showing its effectiveness in guiding
the functionality of the generated websites. The addition of screenshot feedback greatly improves
the appearance score, raising it from 3.0 to 3.6, demonstrating its effect in enhancing website appear-
ance. Adding GUI-agent testing slightly impairs the appearance score, likely because modifying the
code base for functional fulfillment sometimes damages the website appearance or causes errors.
This negative effect is mitigated by the addition of the backtracking and select-best mechanisms.
Qualitative analysis of the effect of screenshot and GUI-agent feedback is provided in Appendix I.

Analysis of Step-GRPO with Screenshot and GUI-agent Feedback. We analyze the design
choices in the Step-GRPO with Screenshot and GUI-agent Feedback training process in Tab.3. The
first line shows the result of Qwen2.5-Coder-7B-Instruct with no additional training. The analysis
based on Tab.3 is as follows: (1) The second and third lines present SFT training for one epoch and
two epochs, showing that training with SFT for two epochs does not notably improve performance
compared to training for only one epoch. Therefore, we trained for only one epoch in the SFT
stage. (2) The fourth and fifth lines show the results of using naive outcome GRPO and Step-GRPO
with cumulative advantage. The rewards in these two variants are the same as in our final design
(Scoreshot + Scoregui); only the advantage computation method differs. Naive outcome GRPO uses

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Impact of the feedback VLM on WebGen-Agent performance. For every agent–VLM pair
we report WebGen-Bench results; the highest Accuracy and Appearance Score are highlighted in
bold.

Agent-engine LLM Feedback VLM Yes Partial No Start
Failed

Accuracy Appearance
Score

Qwen2.5-VL-32B-Inst. Qwen2.5-VL-32B-Inst. 4.5 2.2 78.8 14.5 5.6 1.3
DeepSeek-V3 GPT-4o 46.4 11.4 42.0 0.2 52.1 3.6
DeepSeek-V3 Qwen2.5-VL-32B-Inst. 46.1 13.1 40.6 0.2 52.6 3.8

Qwen2.5-Coder-7B-Inst. Qwen3-8B
Models

0

2

4

6

8

10

12

Fil
es

Average File Count

Qwen2.5-Coder-7B-Inst. Qwen3-8B
Models

0

100

200

300

400

500

600

700

Lin
es

Average Line Count

Original SFT Step-GRPO

Figure 3: Comparison of the average file count and average line count among the original, SFT, and
Step-GRPO models for Qwen2.5-Coder-7B-Instruct and Qwen3-8B.

the maximum value of the step-level rewards in a trajectory as the outcome reward, setting the
advantages to the normalized outcome rewards. Step-GRPO with cumulative advantage calculates
the advantage of each token as the sum of the normalized rewards from the subsequent steps, as
introduced in Shao et al. (2024). Both GRPO advantage computation variants perform notably
worse than our Step-GRPO setting. The sixth and seventh lines present the results of using only
the screenshot scores (Scoreshot) or only the GUI-agent testing scores (Scoregui) as the rewards.
Both are lower than using Scoreshot + Scoregui, demonstrating the necessity of incorporating both
screenshot and GUI-agent testing feedback. We also gather statistics on the average file count and
average line count for the Original, SFT, and Step-GRPO models. The results are shown in Fig. 3.
For both Qwen2.5-Coder-7B-Instruct and Qwen3-8B, the average file count and average line count
consistently increase with SFT and GRPO. This shows that the SFT stage and the Step-GRPO stage
both increase the complexity of the generated websites, which is consistent with their improved
performance.

Analysis of the Agent-Engine LLM and Feedback VLM. We analyze the choice of the agent-
engine LLM and feedback VLM in Tab.4. In our experiments, we use a relatively small and inexpen-
sive VLM, Qwen2.5-VL-32B-Instruct, to provide screenshot and GUI-agent testing feedback, while
employing a strong LLM capable of generating high-quality code, such as DeepSeek-V3, as the
agent-engine LLM. As shown in the second row of Tab.4, replacing Qwen2.5-VL-32B-Instruct with
a proprietary VLM, GPT-4o, as the feedback VLM does not notably improve accuracy or appearance
scores. This demonstrates that Qwen2.5-VL-32B-Instruct is already sufficient for providing accu-
rate screenshot and GUI-agent testing feedback, while being more cost-effective than proprietary
VLMs. As shown in the first row of Tab. 4, replacing DeepSeek-V3 with Qwen2.5-VL-32B-Instruct
results in significantly worse performance, indicating that the agent-engine LLM cannot be replaced
by smaller open-source VLMs. The design choice of decoupling the agent-engine LLM and feed-
back VLM ensures that code is generated by a strong LLM to maintain quality, while screenshot and
GUI-agent testing feedback is handled by a smaller open-source VLM for cost efficiency. Further
analysis of the accuracy of the screenshot and GUI-agent scores provided by the feedback VLM is
included in Tab. 5 of Appendix D, demonstrating the reliability of the scores.

4 RELATED WORK

Visual Code Generation. Code generation that is associated with visual effects exists in a wide
range of application scenarios, such as web page development (Lu et al., 2025b; Xu et al., 2025)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and GitHub-issue fixing (Yang et al., 2024d; Guo et al., 2025b). Previous work has proposed vari-
ous ways to treat visual elements in code generation and other reasoning-intensive tasks (Su et al.,
2025), such as generating code to represent images in problem statements (Huang et al., 2025; Wang
et al., 2025b) and using natural language to describe images(Zhang et al., 2024b). We also apply
natural language descriptions when providing screenshot feedback. More related to our work, a line
of studies(Guo et al., 2024; Si et al., 2025; Yun et al., 2024; Beltramelli, 2017; Sun et al., 2025;
Gui et al., 2025; Laurençon et al., 2024; Wan et al., 2024) explores MLLMs’ ability to reconstruct
single-file HTML code from webpage screenshots. Other studies benchmark MLLMs’ performance
in implementing interactive elements in existing web projects (Xiao et al., 2025a) or performing
web development tasks in a pre-defined sequential manner with detailed technical settings (Xiao
et al., 2025b; Xu et al., 2025). The web development tasks in these works are often solved in a
single HTML file (Zhang et al., 2025a) or contain rigid pipelines (Xu et al., 2025), which are more
suitable for testing MLLMs rather than code agents for end-to-end, repository-level website devel-
opment, as proposed in our work. We evaluate our agent workflow with WebGen-Bench (Lu et al.,
2025b), which measures a code agent’s ability to create multi-file website code bases from scratch
and includes diverse website generation instructions.

Code Agents. Equipped with various tools and powered LLMs(Soni et al., 2025; Yao et al., 2023;
Zhang et al., 2024a), code agents can perform a variety of tasks, such as developing websites(Lu
et al., 2025b) and fixing GitHub issues (Jimenez et al., 2024; Yang et al., 2024c). Some code agents
specialize in a specific field, such as bug fixing (Zhang et al., 2024c) or machine learning (Jiang
et al., 2025). Similar to our work, Bolt.diy (stackblitz labs, 2024) specializes in multi-file website
generation. Others, such as OpenHands (Wang et al., 2024) and Aider (Aider-AI, 2024), are general-
purpose code agents that are not limited to a single field, though their performance on a specific
task might not match that of specialist code agents (Lu et al., 2025b). Our WebGen-Agent is a
code agent specializing in end-to-end website generation, with screenshot feedback and GUI-agent
testing features specifically designed for this task, achieving state-of-the-art performance.

Fine-tuning and Reinforcement Learning for Agents. Supervised fine-tuning (Pan et al., 2025;
Yang et al., 2025b) and reinforcement learning (Dong et al., 2025; Qian et al., 2025) are two methods
widely used to improve the agentic and tool-calling abilities of LLMs. In the field of code agents,
various works (Pan et al., 2025; Yang et al., 2025b; Zhang et al., 2025b; Wang et al., 2025a; Ma et al.,
2024; Xie et al., 2025; Jain et al., 2025; Guo et al., 2025c; Ma et al., 2025a) leverage supervised
fine-tuning combined with software engineering data synthesis and rejection sampling to improve
the performance of open-source models. Similar to these works, we also use rejection sampling
and supervised fine-tuning in the warm-up stage before Step-GRPO. Other works use reinforcement
learning with rewards acquired through comparison with the ground truth (Wei et al., 2025a; Ma
et al., 2025c; Zhuang et al., 2025), determined by the code execution output (Gehring et al., 2025;
Ma et al., 2025b; Golubev et al., 2025), or dependent on task success (Wei et al., 2025b; Lu et al.,
2025a; Chen et al., 2025). These works either use outcome supervision, which is sparse in providing
training signals, or require detailed ground truth to provide step supervision, which is rigid and
difficult to obtain. In contrast to these methods, our work leverages screenshot and GUI-agent
testing scores at each step, which are inherent in the WebGen-Agent pipeline, to provide accurate
step-level supervision in Step-GRPO training.

5 LIMITATIONS AND FUTURE WORK

WebGen-Agent is specifically designed to generate websites based on natural language instructions
from non-expert users. We do not consider response speed or complex network conditions when
generating and evaluating the websites; these are interesting questions for future work. In the su-
pervised fine-tuning and Step-GRPO experiments, we trained only 7B- and 8B-parameter models
due to limited computing power and GPU memory, as Step-GRPO training would take more than
24 hours on 16 NVIDIA A800 GPUs, and we currently do not have enough GPUs to train larger
models. The results on the 7B and 8B models show great potential for our method, and we plan to
apply our training approach to 30B–72B models in the future.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we introduce WebGen-Agent, a code agent that leverages screenshot and GUI-agent
testing feedback, combined with backtracking and select-best mechanisms, to iteratively generate
websites with appealing appearance and smooth functionality. We also propose Step-GRPO with
Screenshot and GUI-agent Feedback, which leverages inherent screenshot and GUI-agent testing
scores to provide step-level supervision in the GRPO training process. Testing WebGen-Agent
on WebGen-Bench shows significant improvements across a wide range of proprietary and open-
source LLMs compared with other code agent systems. WebGen-Agent with Qwen3-Coder-480B-
A35B-Instruct achieves the best performance, with 58.2% accuracy and a 4.3 appearance score.
Training Qwen2.5-Coder-7B-Instruct and Qwen3-8B first with supervised fine-tuning and then with
Step-GRPO with Screenshot and GUI-agent Feedback notably improves accuracies and appearance
scores, demonstrating the effectiveness of our training approach.

REFERENCES

Aider-AI. Ai pair programming in your terminal, 2024. URL https://github.com/
Aider-AI/aider. Accessed: 2025-04-22.

Anthropic. Introducing claude 3.5 sonnet, 2024. URL https://www.anthropic.com/
news/claude-3-5-sonnet. Accessed: 2025-04-22.

Anthropic. Claude sonnet 4, 2025. URL https://www.anthropic.com/claude/sonnet.
Accessed: 2025-08-11.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot, 2017. URL
https://arxiv.org/abs/1705.07962.

Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, and Chuchu
Fan. R1-code-interpreter: Training llms to reason with code via supervised and reinforcement
learning, 2025. URL https://arxiv.org/abs/2505.21668.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and
Zhicheng Dou. Agentic reinforced policy optimization, 2025. URL https://arxiv.org/
abs/2507.19849.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning,
2025. URL https://arxiv.org/abs/2410.02089.

Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim Badertdinov, Maksim Nekrashe-
vich, Anton Shevtsov, Simon Karasik, Sergey Abramov, Andrei Andriushchenko, Filipp Fisin,
Sergei Skvortsov, and Boris Yangel. Training long-context, multi-turn software engineering
agents with reinforcement learning, 2025. URL https://arxiv.org/abs/2508.03501.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Bohua Chen, Yi Su, Dongping Chen, Siyuan
Wu, Xing Zhou, Wenbin Jiang, Hai Jin, and Xiangliang Zhang. Webcode2m: A real-world dataset
for code generation from webpage designs. In Proceedings of the ACM on Web Conference
2025, WWW ’25, pp. 1834–1845. ACM, April 2025. doi: 10.1145/3696410.3714889. URL
http://dx.doi.org/10.1145/3696410.3714889.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

10

https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/claude/sonnet
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/2505.21668
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2508.03501
http://dx.doi.org/10.1145/3696410.3714889


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hongcheng Guo, Wei Zhang, Junhao Chen, Yaonan Gu, Jian Yang, Junjia Du, Binyuan Hui, Tianyu
Liu, Jianxin Ma, Chang Zhou, and Zhoujun Li. Iw-bench: Evaluating large multimodal models
for converting image-to-web, 2024. URL https://arxiv.org/abs/2409.18980.

Lianghong Guo, Wei Tao, Runhan Jiang, Yanlin Wang, Jiachi Chen, Xilin Liu, Yuchi Ma, Mingzhi
Mao, Hongyu Zhang, and Zibin Zheng. Omnigirl: A multilingual and multimodal benchmark for
github issue resolution, 2025b. URL https://arxiv.org/abs/2505.04606.

Lianghong Guo, Yanlin Wang, Caihua Li, Pengyu Yang, Jiachi Chen, Wei Tao, Yingtian Zou, Duyu
Tang, and Zibin Zheng. Swe-factory: Your automated factory for issue resolution training data
and evaluation benchmarks, 2025c. URL https://arxiv.org/abs/2506.10954.

Kai Huang, Jian Zhang, Xiaofei Xie, and Chunyang Chen. Seeing is fixing: Cross-modal reasoning
with multimodal llms for visual software issue fixing, 2025. URL https://arxiv.org/
abs/2506.16136.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents, 2025. URL
https://arxiv.org/abs/2504.07164.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025. URL https://arxiv.
org/abs/2502.13138.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into
html code with the websight dataset, 2024. URL https://arxiv.org/abs/2403.09029.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo:end-to-end policy opti-
mization for gui agents with experience replay, 2025a. URL https://arxiv.org/abs/
2505.16282.

Zimu Lu, Yunqiao Yang, Houxing Ren, Haotian Hou, Han Xiao, Ke Wang, Weikang Shi, Aojun
Zhou, Mingjie Zhan, and Hongsheng Li. Webgen-bench: Evaluating llms on generating interac-
tive and functional websites from scratch, 2025b. URL https://arxiv.org/abs/2505.
03733.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement, 2024. URL https://arxiv.org/abs/2411.
00622.

Yingwei Ma, Yongbin Li, Yihong Dong, Xue Jiang, Rongyu Cao, Jue Chen, Fei Huang, and Binhua
Li. Thinking longer, not larger: Enhancing software engineering agents via scaling test-time
compute, 2025a. URL https://arxiv.org/abs/2503.23803.

Zexiong Ma, Chao Peng, Pengfei Gao, Xiangxin Meng, Yanzhen Zou, and Bing Xie. Sorft: Issue
resolving with subtask-oriented reinforced fine-tuning, 2025b. URL https://arxiv.org/
abs/2502.20127.

11

https://arxiv.org/abs/2409.18980
https://arxiv.org/abs/2505.04606
https://arxiv.org/abs/2506.10954
https://arxiv.org/abs/2506.16136
https://arxiv.org/abs/2506.16136
https://arxiv.org/abs/2504.07164
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2403.09029
https://arxiv.org/abs/2505.16282
https://arxiv.org/abs/2505.16282
https://arxiv.org/abs/2505.03733
https://arxiv.org/abs/2505.03733
https://arxiv.org/abs/2411.00622
https://arxiv.org/abs/2411.00622
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2502.20127
https://arxiv.org/abs/2502.20127


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zexiong Ma, Chao Peng, Qunhong Zeng, Pengfei Gao, Yanzhen Zou, and Bing Xie. Tool-integrated
reinforcement learning for repo deep search, 2025c. URL https://arxiv.org/abs/
2508.03012.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can
frontier llms earn 1 million from real-world freelance software engineering?, 2025. URL https:
//arxiv.org/abs/2502.12115.

OpenAI. Introducing openai o3 and o4-mini, 2025a. URL https://openai.com/index/
introducing-o3-and-o4-mini/. Accessed: 2025-08-11.

OpenAI. Openai o3-mini, 2025b. URL https://openai.com/index/openai-o3-mini.
Accessed: 2025-04-22.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2025. URL https:
//arxiv.org/abs/2412.21139.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025. URL https://arxiv.
org/abs/2504.13958.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code:
Benchmarking multimodal code generation for automated front-end engineering, 2025. URL
https://arxiv.org/abs/2403.03163.

Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie Chen, and Graham Neubig. Coding agents
with multimodal browsing are generalist problem solvers, 2025. URL https://arxiv.org/
abs/2506.03011.

stackblitz labs. bolt.diy, 2024. URL https://github.com/stackblitz-labs/bolt.
diy. Accessed: 2025-04-22.

Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
Kaide Zeng, Zhengyuan Yang, Linjie Li, Yu Cheng, Heng Ji, Junxian He, and Yi R. Fung. Think-
ing with images for multimodal reasoning: Foundations, methods, and future frontiers, 2025.
URL https://arxiv.org/abs/2506.23918.

Haoyu Sun, Huichen Will Wang, Jiawei Gu, Linjie Li, and Yu Cheng. Fullfront: Benchmarking
mllms across the full front-end engineering workflow, 2025. URL https://arxiv.org/
abs/2505.17399.

Yuxuan Wan, Yi Dong, Jingyu Xiao, Yintong Huo, Wenxuan Wang, and Michael R. Lyu. Mrweb:
An exploration of generating multi-page resource-aware web code from ui designs, 2024. URL
https://arxiv.org/abs/2412.15310.

Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, and Yuxiao Dong. Swe-dev: Building software
engineering agents with training and inference scaling, 2025a. URL https://arxiv.org/
abs/2506.07636.

Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang,
Houxing Ren, Mingjie Zhan, and Hongsheng Li. Mathcoder-vl: Bridging vision and code for
enhanced multimodal mathematical reasoning, 2025b. URL https://arxiv.org/abs/
2505.10557.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. In The Thirteenth International Conference on Learning Repre-
sentations, 2024.

12

https://arxiv.org/abs/2508.03012
https://arxiv.org/abs/2508.03012
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/openai-o3-mini
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2506.03011
https://arxiv.org/abs/2506.03011
https://github.com/stackblitz-labs/bolt.diy
https://github.com/stackblitz-labs/bolt.diy
https://arxiv.org/abs/2506.23918
https://arxiv.org/abs/2505.17399
https://arxiv.org/abs/2505.17399
https://arxiv.org/abs/2412.15310
https://arxiv.org/abs/2506.07636
https://arxiv.org/abs/2506.07636
https://arxiv.org/abs/2505.10557
https://arxiv.org/abs/2505.10557


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution, 2025a. URL https://arxiv.org/abs/
2502.18449.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, Hyokun Yun, and Lihong Li. Webagent-r1: Training web agents via end-
to-end multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/2505.
16421.

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zixin Wang, Xinyi Xu, Wenxuan Wang, Zhiyao Xu,
Yuhang Wang, and Michael R. Lyu. Interaction2code: Benchmarking mllm-based interactive
webpage code generation from interactive prototyping, 2025a. URL https://arxiv.org/
abs/2411.03292.

Jingyu Xiao, Ming Wang, Man Ho Lam, Yuxuan Wan, Junliang Liu, Yintong Huo, and Michael R.
Lyu. Designbench: A comprehensive benchmark for mllm-based front-end code generation,
2025b. URL https://arxiv.org/abs/2506.06251.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution, 2025. URL https:
//arxiv.org/abs/2501.05040.

Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
web standards and frameworks, 2025. URL https://arxiv.org/abs/2505.07473.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated
software engineering. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Process-
ing Systems, volume 37, pp. 50528–50652. Curran Associates, Inc., 2024b. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024c. URL https://arxiv.org/abs/2405.15793.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains?, 2024d.
URL https://arxiv.org/abs/2410.03859.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025b. URL https://arxiv.org/abs/2504.21798.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy
Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and Zhiqiang Shen. Web2code: A
large-scale webpage-to-code dataset and evaluation framework for multimodal llms, 2024. URL
https://arxiv.org/abs/2406.20098.

13

https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/2411.03292
https://arxiv.org/abs/2411.03292
https://arxiv.org/abs/2506.06251
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2505.07473
https://proceedings.neurips.cc/paper_files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.20098


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang,
Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo,
Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou,
Chayse Zhou, and Fengzong Lian. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation, 2025a. URL https://arxiv.org/abs/2507.04952.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges, 2024a. URL https:
//arxiv.org/abs/2401.07339.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jinliang You, Jia Li, Yunfei Zhao, and Zhi Jin. Sealign:
Alignment training for software engineering agent, 2025b. URL https://arxiv.org/abs/
2503.18455.

Linhao Zhang, Daoguang Zan, Quanshun Yang, Zhirong Huang, Dong Chen, Bo Shen, Tianyu Liu,
Yongshun Gong, Pengjie Huang, Xudong Lu, Guangtai Liang, Lizhen Cui, and Qianxiang Wang.
Codev: Issue resolving with visual data, 2024b. URL https://arxiv.org/abs/2412.
17315.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024c. URL https://arxiv.org/abs/2404.05427.

Yuchen Zhuang, Di Jin, Jiaao Chen, Wenqi Shi, Hanrui Wang, and Chao Zhang. Workforceagent-
r1: Incentivizing reasoning capability in llm-based web agents via reinforcement learning, 2025.
URL https://arxiv.org/abs/2505.22942.

A WEBGEN-AGENT ALGORITHM

Algorithm 1 demonstrates the WebGen-Agent inference workflow in detail. Algorithms 2 and 3 are
two helper functions for Algorithm 1, presented separately for clarity.

B WEBGEN-AGENT PROMPTS

The prompts for acquiring screenshot and GUI-agent testing feedback are presented in Fig. 4, Fig. 5,
Fig. 6, and Fig. 7.

C EXAMPLES OF WEBGEN-AGENT TRAJECTORIES

To demonstrate the WebGen-Agent workflow in a straightforward way, we present three example
trajectories in Fig.8, Fig.9, and Fig. 10. As shown in these examples, WebGen-Agent iteratively
improves the appearance and functionality of the generated website based on screenshot and GUI-
agent testing feedback.

D ACCURACY OF SCREENSHOT AND GUI-AGENT TESTING SCORES

To analyze the accuracy of the screenshot and GUI-agent testing scores given by the feedback VLM
in the WebGen-Agent pipeline, we evaluated the results of Claude-4-Sonnet, Qwen3-Coder-30B-
A3B-Instruct, Qwen3-Coder-480B-A35B-Instruct, and DeepSeek-V3 as agent-engine LLMs, with
Qwen2.5-VL-32B-Instruct as the feedback VLM, as well as DeepSeek-V3 as the agent-engine LLM
and GPT-4o as the feedback VLM. We manually verified the accuracy of the screenshot and GUI-
agent testing scores. Human annotators were provided with the score and the screenshot or GUI-
agent trajectory at each step and asked to judge whether the score was accurate. If the score was
inaccurate, they provided the correct score. The results are presented in Table 5.

The accuracies of the screenshot scores across all experiments ranged from 93% to 96%, while the
accuracies of the GUI-agent scores ranged from 89% to 93%. The standard errors of the screenshot

14

https://arxiv.org/abs/2507.04952
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2503.18455
https://arxiv.org/abs/2503.18455
https://arxiv.org/abs/2412.17315
https://arxiv.org/abs/2412.17315
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2505.22942


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Prompt:
You are given a single website screenshot as input.
Task
1. Examine the screenshot closely for any rendering or runtime errors (e.g., “404 Not Found”, stack

traces, missing styles, blank areas).

2. Decide whether the screenshot shows a rendering or runtime error.

• If yes, set “is error”: true, extract or paraphrase the visible error message(s) into
“error message”, and leave “screenshot description” empty.

• If no, set “is error”: false, leave “error message” as an empty string (“”), and write
a concise but thorough “screenshot description” that covers:
– Overall layout (e.g., header/sidebar/footer, grid, flex, single-column).
– Key UI components (navigation bar, buttons, forms, images, cards, tables, modals, etc.).
– Color scheme and visual style (dominant colors, light/dark theme, gradients, shadows).
– Visible content and text (headings, labels, sample data).
– Notable design details (icons, spacing, font style) that help someone understand what the

page looks like).

3. Suggest ways to improve the appearance of the website, for example:

• Separate incorrectly overlapping components.

• Adjust layout to avoid large blank areas.

• Adjust text or background color to avoid text color being too similar to the background color.

• If no improvement is necessary, leave “suggestions” as an empty string (“”); otherwise,
briefly list the suggestion(s) in “suggestions”.

4. Grade the response.
Output format (valid JSON)
‘‘‘json
{
"is_error": <boolean>,
"error_message": "<string>",
"screenshot_description": "<string>",
"suggestions": "<string>"

}
‘‘‘

Return only this JSON object—no additional commentary, markdown, or code fences.

Figure 4: The prompt for generating the description and suggestions based on the website screen-
shot.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt:
You are tasked with evaluating the functional design of a webpage. Grade the webpage’s appearance
on a scale of 0 to 5 (5 being highest), considering the following criteria:

• Successful Rendering: Are there any components in the page or is it completely blank? Does the
webpage render correctly without visual errors? Are colors, fonts, and components displayed as
specified?

• Content Relevance: Does the design align with the website’s purpose and user requirements? Are
elements (e.g., search bars, report formats) logically placed and functional?

• Layout Harmony: Is the arrangement of components (text, images, buttons) balanced, intuitive,
and clutter-free?

• Modernness & Beauty: Does the design follow contemporary trends (e.g., minimalism, respon-
sive layouts)? Are colors, typography, and visual hierarchy aesthetically pleasing?

Grading Scale:
• 0 (Blank Page): The screenshot is completely blank or does not contain any visible content. It

may only have a background color or display an error message.

• 1 (Poor): Major rendering issues (e.g., broken layouts, incorrect colors). Content is irrelevant or
missing. Layout is chaotic. Design is outdated or visually unappealing.

• 2 (Below Average): Partial rendering with noticeable errors. Content is partially relevant but
poorly organized. Layout lacks consistency. Design is basic or uninspired.

• 3 (Average): Mostly rendered correctly with minor flaws. Content is relevant but lacks polish.
Layout is functional but unremarkable. Design is clean but lacks modern flair.

• 4 (Good): Rendered well with no major errors. Content is relevant and logically organized. Layout
is harmonious and user-friendly. Design is modern and visually appealing.

• 5 (Excellent): Flawless rendering. Content is highly relevant, intuitive, and tailored to user needs.
Layout is polished, responsive, and innovative. Design is cutting-edge, beautiful, and memorable.

Task:
Review the provided screenshot(s) of the webpage. Provide a concise analysis of a few sentences and
then assign a grade (0–5) based on your analysis. Highlight strengths, weaknesses, and how well the
design adheres to the specifications.
Your Response Format
‘‘‘json
{
"analysis": "<string>",
"grade": <int>

}
‘‘‘

Your Response:

Figure 5: Prompt for evaluating the functional design and visual quality of a webpage.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 WebGen-Agent (edits vs. code-base states made explicit)
Require: Initial instruction I, maximum steps T
Ensure: Final code base C⋆
1: T ← [ I ] ▷ trajectory: instruction, edit, feedback, . . .
2: Steps ← ∅ ▷ archive of step snapshots
3: C ← ∅ ▷ current code base
4: t← 1, consecErr← 0
5: while t ≤ T do
6: ∆Ct ← GENERATEEDIT(T )
7: T += ∆Ct
8: C ← APPLYEDIT(C,∆Ct)
9: O ← EXECUTE(C)

10: if O = error then
11: T += O
12: consecErr← consecErr + 1
13: if consecErr = 5 then
14:

〈
t⋆, C⋆, ∗, ∗

〉
← SELECTBESTSTEP(Steps)

15: C ← C⋆ ▷ restore code base
16: T ← TRUNCATE(T , t⋆)
17: t← t⋆ + 1, consecErr← 0
18: else
19: t← t+ 1
20: end if
21: continue
22: else
23: consecErr← 0
24: end if
25: img← SCREENSHOT(C)
26:

〈
desc, suggshot, scoreshot

〉
← VLM JUDGE(img)

27: T += ⟨desc, suggshot⟩
28: goNext← AGENTDECISION(T )
29: if not goNext then
30: t← t+ 1; continue
31: end if
32:

〈
pass, sugggui, scoregui)← GUI AGENT(C

〉
33: T += ⟨pass, sugggui⟩
34: Steps +=

〈
t, C, scoreshot, scoregui

〉
35: if pass then
36: break
37: else
38: t← t+ 1
39: end if
40: end while
41:

〈
∗, C⋆, ∗, ∗

〉
← SELECTBESTSTEP(Steps)

42: return C⋆

Algorithm 2 SELECTBESTSTEP

Require: Steps = {⟨t, C, scoreshot, scoregui⟩}
1: gmax ← maxs∈Steps scoregui
2: Sg ← {s | scoregui = gmax}
3: return argmax

s∈Sg

scoreshot

scores range from 0.20 to 0.26, while the standard errors of the GUI-agent scores range from 0.31
to 0.44. This demonstrates that the scores are highly accurate, supporting the effectiveness of the
WebGen-Agent pipeline and the Step-GRPO training process. Compared with using Qwen2.5-VL-
32B-Instruct, using GPT-4o as the feedback VLM only marginally improved the screenshot score
accuracy from 94.8% to 95.5% and the GUI-agent score accuracy from 91.2% to 92.2%. This shows
that Qwen2.5-VL-32B-Instruct is sufficient for the task while being significantly more cost-effective.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 3 TRUNCATE

Require: Trajectory T , step id t⋆

1: return prefix of T ending just after the edit and feedback of step t⋆

Based on the original website development instruction, you should identify all the requirements of
the website generation and create a comprehensive instruction for a web-navigation GUI agent to test
the generated website. The following is an example of triggering the GUI agent testing based on the
original instruction:

Example

Original instruction:
Please implement a self-driving tour website that provides self-driving tour products and services.
The website should have functionalities for browsing self-driving tour routes, booking self-driving
tour hotels, and self-help self-driving tour packages. Users should be able to browse different types
of self-driving tour routes, book hotels and packages, and query self-driving club information. The
website should also provide search and filtering functions to help users quickly find the self-driving
tour products they need. Define background as cream; define components with dark teal.

<boltAction type="gui agent test">
Verify cream background and dark-teal buttons. Browse different types of self-driving tour routes,
book hotels and packages, and query self-driving club information. Search and filter for self-driving
tour products.
</boltAction>

The following is the original website development instruction:

<instruction>{instruction}</instruction>

Trigger the GUI agent testing based on the original instruction in a way similar to the example. Do
not generate additional comments.

Figure 6: Prompt for generating a GUI-agent testing instruction from the original website specifica-
tion.

E ANALYSIS OF THE COMPREHENSIVENESS OF GUI-AGENT TESTING
INSTRUCTIONS

To analyze the comprehensiveness of the GUI-agent testing instructions generated by the agent,
we manually evaluated the instructions from the experiment runs using Claude-4-Sonnet, Qwen3-
Coder-30B-A3B-Instruct, Qwen3-Coder-480B-A35B-Instruct, and DeepSeek-V3. We graded each
GUI-agent instruction on a 1–5 scale, determined by how completely the instruction translates
each website requirement into concrete GUI-agent checks. The grading guidelines are presented
in Fig. 11.

As shown in Tab. 6, 77.2% of the GUI-agent testing instructions across the four models receive a
score of 5 (Complete, ≈ 100% of requirements). Instructions with a score of 4 or higher (High,
75–90%) account for 98.3% of the total, while only 1.7% receive a score of 3 (Moderate, 50–75%);
none score below 3. These results indicate that the GUI-agent instructions comprehensively cover
most of the website requirements.

F CATEGORICAL RESULTS

Tab. 7 shows the categorical results of WebGen-Agent with various proprietary and open-source
models on WebGen-Bench. As shown in the table, WebGen-Agent consistently achieves superior
performance across all instruction and test-case categories compared to other code agent systems.
For both the 7B and 8B models, Step-GRPO improves performance in most categories compared to
the original instruct model and the SFT model. This demonstrates the effectiveness of the WebGen-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt: You are given a GUI-agent testing trajectory.

The GUI agent testing trajectory:

GUI-Agent Testing Instruction:
{gui instruction}

Trajectory:
{result}

Task
1. Examine the trajectory for any failed actions that indicate a problem in the website design.

2. Decide whether the GUI-agent testing trajectory reveals any flaw in the website implementation.

• If yes, set "test passed": true, and leave "improvement suggestions" empty.
• If no, set "test passed": false, and write a concise but thorough
"improvement suggestions" that covers the suggested improvements targeting
the problems revealed by the testing result.

3. Evaluate the results of the GUI-agent test run and assign one integer grade from 1 to 5:

• 1: The vast majority of tested functions fail or behave incorrectly.
• 2: Many functions fail; only a few behave as expected.
• 3: About half of the functions work as expected; success is mixed.
• 4: Most functions work as expected; only minor issues remain.
• 5: All tested functions work exactly as expected; no issues observed.

Assign the grade to "grade".
Output format (valid JSON)
‘‘‘json
{
"test_passed": <boolean>,
"improvement_suggestions": "<string>",
"grade": <int>

}
‘‘‘

You can first make a short analysis of two or three sentences, then output this JSON object.

Figure 7: Prompt for evaluating GUI-agent testing trajectories and providing improvement sugges-
tions.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Accuracy of the screenshot and GUI-agent scores using human annotation as ground truth.
For every experiment we report the accuracy together with its standard error.

Score
Type

Agent-engine LLM Feedback VLM Accuracy
(%)

Std.
Error

Screenshot

Claude-4-Sonnet Qwen2.5-VL-32B-Inst. 93.6 0.25
Qwen3-Coder-30B-A3B-Inst. Qwen2.5-VL-32B-Inst. 93.9 0.26
Qwen3-Coder-480B-A35B-Inst. Qwen2.5-VL-32B-Inst. 95.6 0.20
DeepSeek-V3 Qwen2.5-VL-32B-Inst. 94.8 0.22
DeepSeek-V3 GPT-4o 95.5 0.20

GUI agent

Claude-4-Sonnet Qwen2.5-VL-32B-Inst. 90.1 0.31
Qwen3-Coder-30B-A3B-Inst. Qwen2.5-VL-32B-Inst. 91.4 0.44
Qwen3-Coder-480B-A35B-Inst. Qwen2.5-VL-32B-Inst. 89.6 0.41
DeepSeek-V3 Qwen2.5-VL-32B-Inst. 91.2 0.36
DeepSeek-V3 GPT-4o 92.2 0.33

Table 6: Distribution (%) of human scores regarding the comprehensiveness of the GUI-agent testing
instructions and the resulting average score. The definition of the scores are presented in Fig. 11.
The scores range from 1 to 5.

Model 5 4 3 2 1 Avg. Score

Claude-4-Sonnet 84.2 13.9 2.0 0.0 0.0 4.82
DeepSeek-V3 73.3 24.8 2.0 0.0 0.0 4.71
Qwen3-Coder-30B-A3B-Inst. 75.2 23.8 1.0 0.0 0.0 4.74
Qwen3-Coder-480B-A35B-Inst. 76.2 21.8 2.0 0.0 0.0 4.74

Total 77.2 21.0 1.7 0.0 0.0 4.75

Agent workflow and the Step-GRPO training process, which incorporates screenshots and GUI-
agent feedback.

G ANALYSIS OF MAXIMUM ITERATION NUMBERS

To analyze the effect of the maximum iteration number parameter on the performance of WebGen-
Agent, we test the accuracy, appearance score, and the percentage of samples that exceed the max-
imum iteration limit (exceed rate) at different maximum iteration numbers. The agent-engine LLM
used is DeepSeek-V3.

As shown in Fig. 12 and Tab. 8, the accuracy and appearance score show a rising trend as the maxi-
mum iteration number increases, while the exceed rate continuously decreases. When the maximum
iteration number is between 14 and 20, the accuracy, appearance score, and exceed rate all begin to
converge. This is because most samples finish before reaching the iteration limit, as reflected by the
exceed rate, and the impact of the maximum iteration number on performance diminishes.

H QUALITATIVE ANALYSIS OF SUPERVISED FINETUNING AND STEP-GRPO

To provide a qualitative analysis of the effects of supervised fine-tuning and Step-GRPO with screen-
shot and GUI-agent feedback, we present examples of websites generated by Qwen2.5-Coder-7B-
Instruct, Qwen2.5-Coder-7B-Instruct-SFT, and Qwen2.5-Coder-7B-Instruct-Step-GRPO in Figs.13
and14. We also include examples of websites generated by Qwen3-8B, Qwen3-8B-SFT, and
Qwen3-8B-Step-GRPO in Figs.15 and16. As demonstrated in the examples, supervised fine-tuning
greatly reduces the models’ tendency to generate erroneous or malformed websites and improves
their ability to follow the appearance requirements specified in the instructions. Step-GRPO further
refines the aesthetics and harmony of the generated websites.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Categorical results of WebGen-Agent with various proprietary and open-source models on
WebGen-Bench (Lu et al., 2025b), compared with other code agent systems. The highest score of
each column is marked in bold.

Test Name Instruction Categories Test-case Categories

Content
Presen-
tation

User
Inter-
action

Data
Manage-

ment

Functional
Testing

Data-
Display
Testing

Design-
Validation

OpenHands

Claude-3.5-Sonnet 32.8 18.4 18.4 12.4 33.9 32.0
DeepSeek-R1 16.4 8.9 5.9 5.0 9.9 25.0
DeepSeek-V3 12.6 7.3 8.4 3.8 8.1 25.0

Aider

Claude-3.5-Sonnet 31.9 21.1 16.6 14.9 30.1 34.0
DeepSeek-R1 39.1 28.6 13.4 17.6 35.2 44.3
DeepSeek-V3 17.8 12.8 12.5 9.7 19.1 18.4

Bolt.diy

Claude-3.5-Sonnet 35.6 21.2 26.2 17.1 26.3 52.0
DeepSeek-R1 43.7 20.6 24.7 21.1 29.3 44.3
DeepSeek-V3 37.1 16.6 11.2 10.5 28.2 38.1
GPT-4o 26.4 5.9 11.2 4.7 19.6 24.6
o3-mini 28.7 17.7 13.4 11.4 25.5 33.6
Qwen2.5-Coder-32B 17.5 6.9 5.9 1.9 14.5 23.0
Qwen2.5-72B-Inst. 28.2 10.1 5.6 5.8 21.0 25.4
WebGen-LM-7B 27.9 23.8 38.1 22.0 27.7 47.5
WebGen-LM-14B 30.2 27.8 31.6 23.6 26.9 49.2
WebGen-LM-32B 46.6 33.2 38.8 29.1 43.0 56.1

WebGen-Agent

Proprietary Models

Claude-3.5-Sonnet 57.8 48.7 51.9 38.5 60.5 76.2
DeepSeek-R1 57.8 44.2 38.1 35.0 53.8 66.8
DeepSeek-V3 58.0 53.2 45.6 40.9 61.0 72.5
o3 59.2 46.6 53.4 43.7 55.1 68.9
Claude-4-Sonnet 68.7 51.8 52.5 44.0 69.4 71.7
Gemini-2.5-Pro 60.3 48.2 45.6 37.9 60.2 72.5
Qwen3-Coder-480B-A35B-Inst. 64.7 55.8 55.9 43.2 71.2 79.9

Open-Source Models (30B–72B)

Qwen2.5-Coder-32B-Inst. 35.6 28.8 34.4 20.9 32.3 62.3
Qwen3-Coder-30B-A3B-Inst. 55.2 54.3 47.2 39.1 62.1 76.6
Qwen2.5-72B-Instruct 43.4 30.4 38.8 23.0 39.8 66.0

Open-Source Models (7B–8B)

Qwen2.5-Coder-7B-Inst. 20.7 8.6 10.9 7.4 15.9 21.3
Qwen2.5-Coder-7B-Inst.-SFT 53.4 33.5 33.8 23.5 48.4 67.6
Qwen2.5-Coder-7B-Inst.-Step-GRPO 51.1 41.1 47.8 30.7 56.7 69.3

Qwen3-8B 37.4 34.3 30.0 26.8 34.1 54.1
Qwen3-8B-SFT 41.7 34.2 43.8 26.8 43.8 63.1
Qwen3-8B-Step-GRPO 52.0 38.8 43.1 30.2 51.1 68.4

I QUALITATIVE ANALYSIS OF THE WEBGEN-AGENT WORKFLOW

To demonstrate how the WebGen-Agent workflow functions, we provide examples of steps in
WebGen-Agent trajectories where the agent improves the website’s appearance based on screen-
shot or GUI-agent feedback. As shown in Fig. 17, Fig. 18, Fig. 19, Fig. 20, and Fig. 21, the agent
enhances the website’s visual appeal by incorporating suggested improvements. Similarly, Fig. 22,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Influence of the maximum number of iterations on agent performance.

Metric 2 4 6 8 10 12 14 16 18 20

Accuracy 42.4 47.9 50.2 50.4 52.0 51.9 51.2 53.3 52.6 52.6
Appearance Score 3.2 3.6 3.7 3.6 3.7 3.8 3.8 3.7 3.8 3.8
Exceed Rate (%) 100.0 57.4 34.7 22.8 15.8 13.9 10.9 8.9 8.9 7.9

Fig. 23, Fig. 24, Fig. 25, and Fig. 26 illustrates how the agent refines the website’s functionality
based on feedback from the GUI-agent testing process. The steps are simplified due to space con-
straints.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Assistant: I'll enhance the design with more visual elements while maintaining the color scheme. Here are the key 
improvements: 1. Add food-related icons to 2. Add cards for featured ……

System Prompt: You are Bolt, an expert AI assistant and exceptional senior software developer with vast knowledge across 
multiple programming languages, frameworks, and best practices. <system_constraints> You are operating in an environment 
called WebContainer ……
User: Please implement a food distribution website for managing and distributing food. The website should have 
functionalities for food donation, food distribution, and volunteer management. Users should be able to browse food donation 
information, apply for food distribution, view volunteer information, and manage their own accounts. Use azure for the 
background and midnight blue for components.
Assistant: I'll create a food distribution website with the requested functionalities and color scheme. Here's the 
implementation plan: 1. Set up Vite + React with required dependencies 2. Create components for donation, distribution, and 
volunteer management ……

Click [1]

The suggestions based on the GUI-agent testing result: 
Address the root cause of the blank page issue, which could 
involve server-side errors, frontend rendering problems, or 
resource loading failures. Implement robust error handling 
and loading indicators to provide feedback to users. Ensure 
the website is thoroughly tested in staging environments to 
catch such critical issues before deployment ……

Assistant: I'll add error handling and loading states to prevent blank page issues. Here are the key improvements: 1. Add 
loading states for all pages ……

Click [1] Click [2] Type [5]; admin ……
The suggestions based on the GUI-agent testing result: Improve the Food Distribution Application form by: 1) Clearly 
marking all mandatory fields with an asterisk or placeholder text before submission, 2) Providing a summary of required 
fields upfront to prevent partial submissions, and 3) Implementing client-side validation to highlight missing fields 
simultaneously rather than sequentially.

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The webpage has a clean and simple layout with a dark blue header 
containing navigation links: 'Home', 'Donations', 'Distribution', 'Volunteers', and 'Login’ …… 
Suggestions for Improvement: Consider adding more visual elements such as icons …… If no 
further modification is necessary, output <boltAction type="screenshot_validated"/> to signal 
that the screenshot is satisfactory.

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a clean and organized homepage for a website 
called 'Food Distribution Network.' The overall layout includes a top navigation bar with icons 
and links labeled 'Home,' 'Donations,' 'Distribution,' 'Volunteers,' and 'Login.' Below the 
navigation bar, there is …… If no further modification is necessary, output <boltAction 
type="screenshot_validated"/> to signal that the screenshot is satisfactory.

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a clean and organized homepage for a food 
distribution network. The overall layout includes a top navigation bar with icons and links 
labeled 'Home', 'Donations', 'Distribution', 'Volunteers', and 'Login'. Below the navigation bar, 
there is a prominent heading 'Welcome to…… If no further modification is necessary, output 
<boltAction type="screenshot_validated"/> to signal that the screenshot is satisfactory.

Assistant: I'll enhance the distribution form with better validation and field requirements. Here are the improvements: 1. Add 
asterisks to required fields 2. Implement client-side validation 3. Show all validation errors at once 4. Add a summary of ……

……

…… 
(More Rounds Omitted)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 3, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 5, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 1

<boltAction type="screenshot_validated"/>

<boltAction type="screenshot_validated"/>

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 5, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui =3

Figure 8: Example of a WebGen-Agent trajectory.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

System Prompt: You are Bolt, an expert AI assistant and exceptional senior software developer with vast knowledge across 
multiple programming languages, frameworks, and best practices. <system_constraints> You are operating in an environment 
called WebContainer ……
User: Please implement a multi-company dashboard for managing and displaying financial data from multiple companies. The 
dashboard should be able to collect and display financial information from each company, provide consolidated reports, and 
support cross-company comparisons and reporting. Users should be able to browse financial data from each company, view 
consolidated reports, and perform financial management and reporting. Apply mint cream as the background; style all 
components with teal.
Assistant: I'll create a multi-company financial dashboard using React with Vite. Here's the implementation plan: 1. Set up Vite 
+ React project 2. Create components for company data display and comparison 3. Implement mock financial data storage 4. 
Style with mint cream background and teal components……

Assistant: I'll enhance the dashboard with better comparison features and financial management tools. Here are the key 
improvements: 1. Add comparison mode to select multiple companies 2. Include financial ratios and metrics 3. Add export 
functionality for reports……

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a financial dashboard with a clean and 
organized layout. The top section features a teal header with the title 'Financial Dashboard' and 
navigation options labeled 'Dashboard' and 'Consolidated Report’. Below the header is a search 
bar for filtering companies. The main content area is divided into four equal-sized cards …… If 
no further modification is necessary, output <boltAction type="screenshot_validated"/> to 
signal that the screenshot is satisfactory.

Click [1] Click [2] Scroll WINDOW; down ……
The suggestions based on the GUI-agent testing result: Improve navigation and accessibility of cross-company comparison 
and financial management functionalities to allow thorough testing. Ensure all critical features are easily reachable and not 
hidden behind repetitive interactions. Consider adding more interactive elements or drill-down options for detailed 
financial data exploration …… 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 4, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 2

<boltAction type="screenshot_validated"/>

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a financial dashboard with a clean and 
organized layout. The top section includes a header with the title 'Financial Dashboard' and 
navigation options labeled 'Dashboard' and 'Consolidated Report'. Below the header is a search 
bar labeled 'Search companies...'. A button labeled 'Compare Companies’ is …… If no further 
modification is necessary, output <boltAction type="screenshot_validated"/> to signal that the 
screenshot is satisfactory.

Click [1] Click [2] Scroll WINDOW; down ……
The trajectory shows that the GUI agent successfully verified the mint cream background and teal components, browsed 
financial data, viewed consolidated reports, and performed cross-company comparisons. The GUI agent testing is successful 
and no further improvement is necessary. Observe the above feedback and decide whether further modifications to the 
code are needed based on the GUI-agent testing summary. If no further modification is necessary, output <boltAction 
type="finish"/> 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 4, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 5

<boltAction type="screenshot_validated"/>

<boltAction type="finish"/>

Figure 9: Example of a WebGen-Agent trajectory.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Assistant: I'll fix the JSX syntax errors in the PolicyDetailPage.jsx file. The issue is with mismatched HTML tags in the JSX 
structure. <boltArtifact id="regulatory-dashboard-fixed" title="Regulatory Policy Dashboard - Fixed"> ……

System Prompt: You are Bolt, an expert AI assistant and exceptional senior software developer with vast knowledge across 
multiple programming languages, frameworks, and best practices. <system_constraints> You are operating in an environment 
called WebContainer ……
User: Please implement a dashboard website for displaying regulatory policies. The website should have data visualization 
capabilities to clearly display complex regulatory policies. Users should be able to browse and analyze different policies, view 
related data and charts, and be able to filter and sort as needed. Assign lavender to the background and indigo to the UI 
elements.

Assistant: I'll create a regulatory policy dashboard with data visualization capabilities using React and Chart.js. Let me think 
through this step by step: 1. We need a dashboard layout with navigation and main content area ……

Assistant: Looking at the screenshot description, I can see that the dashboard is functioning but could benefit from some 
improvements to better meet the requirements. The current implementation only shows a basic dashboard view,.……

Click [1] Scroll WINDOW; down ANSWER; YES
Looking at this GUI-agent testing trajectory, I can see that the agent successfully navigated through the application, verified 
the requested visual elements (lavender background and indigo UI elements), and performed the required actions of 
browsing policies, using filters, and analyzing data. The GUI agent testing is successful and no further improvement is 
necessary. If no further modification is necessary, output <boltAction type="finish"/>.

Installation of dependencies was successful. Starting the service emitted errors: > regulatory-
policy-dashboard@0.0.0 dev > vite   VITE v4.5.14  ready in 3504 ms Local:   
http://localhost:36593/ Network: use --host to expose Error:   Failed to scan for dependencies 
from entries: /workspace/index.html ERROR Expected closing "strong" tag to match opening 
"p" tag    src/pages/PolicyDetailPage.jsx:33:61:...    <p><strong>Effective Date:</strong> 
{policy.date}</p>  The opening "p" tag is here: /PolicyDetailPage.jsx:33:11: <strong>Effective 
Date:</strong> ……

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a Regulatory Policy Dashboard with a clean and 
structured layout. The overall design features a purple and white color scheme, giving it a 
professional and modern look. The dashboard includes a sidebar on the left with navigation 
options such as Dashboard, Policies, Analytics, Reports, Settings, Filters, Categories, Status, …… 
If no further modification is necessary, output <boltAction type="screenshot_validated"/> to 
signal that the screenshot is satisfactory.

Installation of dependencies was successful. Starting the service was successful. The 
screenshot description: The screenshot shows a Regulatory Policy Dashboard with a clean 
and organized layout. The overall design features a purple and white color scheme, giving it a 
professional and modern look. The dashboard includes a sidebar on the left with navigation 
options such as Dashboard, Policies, …… If no further modification is necessary, output 
<boltAction type="screenshot_validated"/> to signal that the screenshot is satisfactory.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 0

<boltAction type="screenshot_validated"/>

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 5, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 5

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 4, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 0

<boltAction type="finish"/>

Assistant: I'll create a regulatory policy dashboard with data visualization capabilities using React and Chart.js. Let me think 
through this step by step: 1. We need a dashboard layout with:   - Header with title and navigation ……

Installation of dependencies was successful. Starting the service was successful. The screenshot 
contains errors: This localhost page can't be found.  Modify the code to fix the errors in 
screenshot.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 0
Assistant: ……

Feedback: …… 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shot = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆gui = 0

Five Consecutive Errors, Backtrack!

……

Figure 10: Example of a WebGen-Agent trajectory.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

GUI-agent Instruction Evaluation Guidelines:
Score the instruction 1 – 5, where 5 = best. The dominant criterion is comprehensiveness: how
completely the instruction translates every website requirement into concrete GUI-agent checks.

Grading Scale:
• 1 (Minimal, < 25 %): The instruction overlooks most of the stated requirements.

• 2 (Low, 25 – 50 %): Only some primary requirements are mentioned; many important items are
absent.

• 3 (Moderate, 50 – 75 %): Core functionalities are covered, but several secondary features or style
rules are skipped.

• 4 (High, 75 – 90 %): All major functional requirements plus most visual or secondary ones are
included; only a few minor details are missing.

• 5 (Complete, ≈ 100 % of requirements): Every requirement is turned into checks. Nothing
significant is left out.

Figure 11: Grading guidelines for manually evaluating GUI-agent testing instructions

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Max Iter

40

42

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

Accuracy (%)
Appearance Score

3.0

3.2

3.4

3.6

3.8

4.0

Ap
pe

ar
an

ce
 S

co
re

Accuracy and Appearance Score vs. Max Iter

(a) Accuracy (%) and Appearance Score as a function
of the maximum number of iterations.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Max Iter

0

20

40

60

80

100

Ex
ce

ed
 R

at
e 

(%
)

Exceed Rate vs. Max Iter
Exceed Rate (%)

(b) Exceed Rate (%) versus the maximum number of
iterations.

Figure 12: Effect of the maximum iteration number hyper-parameter on different performance met-
rics.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Qwen2.5-Coder-7B-Instruct (Original -> SFT -> Step-GRPO)

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Figure 13: Screenshots of websites created by Qwen2.5-Coder-7B-Instruct, Qwen2.5-Coder-7B-
Instruct-SFT, and Qwen2.5-Coder-7B-Instruct-Step-GRPO.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Qwen2.5-Coder-7B-Instruct (Original -> SFT -> Step-GRPO)

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

result.json

Figure 14: Screenshots of websites created by Qwen2.5-Coder-7B-Instruct, Qwen2.5-Coder-7B-
Instruct-SFT, and Qwen2.5-Coder-7B-Instruct-Step-GRPO.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Qwen3-8B (Original -> SFT -> Step-GRPO)

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Figure 15: Screenshots of websites created by Qwen3-8B, Qwen3-8B-SFT, and Qwen3-8B-Step-
GRPO.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Qwen3-8B (Original -> SFT -> Step-GRPO)

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Original SFT Step-GRPO

Figure 16: Screenshots of websites created by Qwen3-8B, Qwen3-8B-SFT, and Qwen3-8B-Step-
GRPO.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

I‘ll enhance the UI based on the feedback while maintaining all the required functionality. Here 
are the improvements:  <boltArtifact id=“wheel-of-fortune-enhanced” title=“Enhanced Wheel 
of Fortune Website”>\n <boltAction type=“file” filePath=“src/App.css”>.app {\n max-width: 
800px;\n margin: 0 auto;\n padding: 20px;\n text-align: center;\n ……

Suggestions: 1. Consider adding hover effects to the buttons to provide visual feedback when 
users interact with them. 2. Ensure consistent spacing around the 'Spin the Wheel!' button to 
maintain alignment with the top navigation buttons……

Figure 17: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on screenshot feedback. The step is simplified due to space constraints.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

I‘ll enhance the home page with more engaging content and visual elements while maintaining 
the requested color scheme. Here are the improvements:\n\n<boltArtifact id=“baseball-
simulation-enhancements” title=“Enhanced Home Page”>\n  <boltAction type=“file” 
filePath=“src/pages/Home.jsx”>import { Link } from ’react-router-dom’\n ……

Suggestions: 1. Add more content or interactive elements to fill the blank space and provide 
users with immediate engagement. 2. Consider adding icons or images related to baseball to 
enhance visual appeal and reinforce the theme. 3. Implement a responsive design to ……

Figure 18: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on screenshot feedback. The step is simplified due to space constraints.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

I'll enhance the website by adding a footer with contact info and some healthcare icons to 
improve visual appeal. Here are the modifications:\n\n<boltArtifact id=\"clinical-office-
website-enhanced\" title=\"Enhanced Clinical Office Website\">\n  <boltAction type=\"file\" 
filePath=\"src/index.css\">* {\n  margin: 0;\n……

Suggestions: Consider adding some visual elements such as icons or images related to 
healthcare to enhance engagement. Additionally, introducing a footer with contact information 
or social media links could improve user experience.……

Figure 19: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on screenshot feedback. The step is simplified due to space constraints.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

I‘ll enhance the website based on the feedback by adding a footer, improving visual elements, 
and adding a call-to-action button. Here are the modifications:\n\n<boltArtifact id=“phone-
operator-website-enhanced” title=“Enhanced Phone Operator Website”>\n  <boltAction 
type=“file” filePath=“src/index.css”>body {\n  margin: 0;\n……

Suggestions: The layout is already quite clean and functional, but here are some suggestions 
for further improvement:\n1. Add more visual elements such as icons or images to enhance 
engagement.\n2. Consider adding a footer with additional links or contact information ……

Figure 20: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on screenshot feedback. The step is simplified due to space constraints.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

I can see from the screenshot that the color picker is showing as black lines instead of proper 
color swatches, and the layout needs some improvements. Let me fix these 
issues:\n\n<boltArtifact id="shirt-customization-ecommerce" title="E-commerce Shirt 
Customization System">\n<boltAction type="file" filePath=……

Suggestions: 1. Replace the placeholder black lines under 'Color' with actual color swatches or 
options for better user interaction. 2. Add spacing between sections (e.g., between 'Size' and 
'Color') to improve readability and visual separation. 3. Consider adding a preview ……

Figure 21: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on screenshot feedback. The step is simplified due to space constraints.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

I need to address the specific issues mentioned in the feedback. Let me fix the search 
functionality, form submission issues, and add proper error messaging.\n\n<boltArtifact 
id="technical-website" title="Technical Information and Solutions Website">\n<boltAction 
type="file" ……

Suggestions: 1. Fix the search functionality to properly index and return relevant technical 
content, or populate the database with searchable articles and solutions. 2. Implement proper 
error messaging for failed searches and form submissions to provide user feedback ……

Type [5]; "technical articles" Type [5]; "technical solutions"

Type [5]; "technology" Click [4] ……

Type [5]; "technical articles" Type [5]; "solutions"

Click [11] Click [6] ……

Figure 22: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on GUI-agent testing feedback. The step is simplified due to space constraints.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

I need to debug and fix the transaction submission issue. Let me add better error handling and 
ensure the transaction data is properly saved and displayed.\n\n<boltArtifact id="hospital-
management-system" title="Hospital Management System">\n<boltAction type="file" 
filePath="src/components/FinancialManagement.jsx">import React ……

Suggestions: The transaction submission functionality is not working properly. This prevents 
users from recording financial data and blocks testing of other dependent features. The system 
should ensure that the transaction is properly .……

Click [2] Click [9]

Type [1]; Patient Fee Collection; Type [2]; 500; Click [4] Click [4] ……

Click [2] Click [11]

Type [1]; Patient Fee Collection; Type [2]; 150; Click [4]…… Click [9] ……

Figure 23: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on GUI-agent testing feedback. The step is simplified due to space constraints.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

I need to fix the login form issue where the password field is not properly registering input 
values. Let me update the Login component to ensure proper form handling and 
validation.\n\n<boltArtifact id="e-government-system" title="E-Government Office 
Management System">\n<boltAction type="file" filePath= ……

Suggestions: The login form has a critical issue where the password field fails to register or 
retain entered values, consistently showing 'password field is empty' errors despite multiple 
input attempts. This suggests problems with form input handling, data binding ……

Type [0]; admin; Type [1]; admin123456; Click [2] Type [0]; admin; Type [1]; admin123456; Click [2]

Type [0]; admin; Type [1]; admin123456; Click [2] Type [0]; admin; Type [1]; admin123456; Click [2] ……

Type [0]; admin; Type [1]; admin123456; Click [2] Click [1]

Click [8] Click [0] ……

Figure 24: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on GUI-agent testing feedback. The step is simplified due to space constraints.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

I need to fix the non-functional "Add New Link" button. Let me debug and update the code to 
ensure proper functionality.\n\n<boltArtifact id="linktree-website" title="Link Tree Website 
with CRUD Operations">\n<boltAction type="file" 
filePath="src/components/Dashboard.jsx">import React, { useState } from 'react’ ……

Suggestions: The 'Add New Link' button appears to be completely non-functional, as evidenced 
by 13 consecutive clicks with no response or state change. This is a critical issue that prevents 
users from accessing the core functionality of the LinkTree Manager ……

Click [3] Click [3]

Click [3] Click [3] ……

Click [3] Type [1]; Papaya Whip Background

Type [2]; https://example.com/papaya-whip-background Click [2] ……

Figure 25: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on GUI-agent testing feedback. The step is simplified due to space constraints.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

I‘ll enhance the app by adding contest access after enrollment and improving the question flow. 
Here are the modifications:\n\n<boltArtifact id=“trivia-contest-enhancements” title=“Trivia 
Contest Enhancements”>\n  <boltAction type=“file” filePath=“src/pages/Home.jsx”>import 
{ useState } from ’react’ ……

Suggestions: 1. Ensure contest questions are accessible after enrollment, either by redirecting 
users to the questions automatically or providing a clear navigation path (e.g., a 'Start Contest' 
button). 2. Add a dedicated section or page for answering questions and submitting ……

Click [3] Click [2]

Click [1] Click [2] ……

Click [3] Click [4]

Click [7] Click [7] ……

Figure 26: Example of a step in a WebGen-Agent trajectory where the agent improves the website’s
appearance based on GUI-agent testing feedback. The step is simplified due to space constraints.

40


	Introduction
	Method
	WebGen-Agent Workflow
	Step-GRPO with Screenshot and GUI-agent Feedback

	Experiments
	Main Results
	Ablation Studies

	Related Work
	Limitations and Future Work
	Conclusion
	WebGen-Agent Algorithm
	WebGen-Agent Prompts
	Examples of WebGen-Agent Trajectories
	Accuracy of Screenshot and GUI-agent Testing Scores
	Analysis of the Comprehensiveness of GUI-agent Testing Instructions
	Categorical Results
	Analysis of Maximum Iteration Numbers
	Qualitative Analysis of Supervised Finetuning and Step-GRPO
	Qualitative Analysis of the WebGen-Agent Workflow

