--- license: cc tags: - onnx - image-classification - cifar10 - dropout - aidge pipeline_tag: image-classification datasets: - cifar10 metrics: - type: accuracy value: 69.96% model-index: - name: Custom ResNet-18 with Integrated Dropout results: - task: type: image-classification name: Image Classification dataset: name: CIFAR-10 type: cifar10 metrics: - type: accuracy value: 69.96% --- # MarwaNet (ONNX) This is a **custom convolutional neural network (CNN)** trained on the **CIFAR-10** dataset, developed to test the integration of a **custom Dropout operator** for the **Aidge** platform. ## Details - **Architecture**: Custom Convolutional Neural Network (CNN) with a Dropout layer - **Trained on**: CIFAR-10 (60,000 32x32 color images, 10 classes) - **Data Normalization**: `mean = [0.4914, 0.4822, 0.4465]` ; `std = [0.2023, 0.1994, 0.2010]` - **Dropout Probability**: 0.3 - **ONNX opset version**: 15 - **Conversion tool**: PyTorch → ONNX