Upload custom kernels
Browse files- README.md +9 -0
- build-output/torch-universal/rmsnorm/__init__.py +5 -0
- build-output/torch-universal/rmsnorm/layers.py +24 -0
- build-output/torch-universal/rmsnorm/rmsnorm.py +988 -0
- build.toml +5 -0
- flake.nix +17 -0
- torch-ext/rmsnorm/__init__.py +5 -0
- torch-ext/rmsnorm/layers.py +24 -0
- torch-ext/rmsnorm/rmsnorm.py +988 -0
README.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: bsd-3-clause
|
| 3 |
+
tags:
|
| 4 |
+
- kernel
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## triton-layer-norm
|
| 8 |
+
|
| 9 |
+
Triton layer norm [from flash-attention](https://github.com/Dao-AILab/flash-attention).
|
build-output/torch-universal/rmsnorm/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .rmsnorm import rms_norm_fn
|
| 2 |
+
|
| 3 |
+
from . import layers
|
| 4 |
+
|
| 5 |
+
__all__ = ["layers", "rms_norm_fn"]
|
build-output/torch-universal/rmsnorm/layers.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
from .rmsnorm import rms_norm_fn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class RMSNorm(nn.Module):
|
| 8 |
+
weight: torch.Tensor
|
| 9 |
+
variance_epsilon: float
|
| 10 |
+
|
| 11 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 12 |
+
return rms_norm_fn(
|
| 13 |
+
hidden_states,
|
| 14 |
+
self.weight,
|
| 15 |
+
bias=None,
|
| 16 |
+
residual=None,
|
| 17 |
+
eps=self.variance_epsilon,
|
| 18 |
+
dropout_p=0.0,
|
| 19 |
+
prenorm=False,
|
| 20 |
+
residual_in_fp32=False,
|
| 21 |
+
) # type: ignore
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
__all__ = ["RMSNorm"]
|
build-output/torch-universal/rmsnorm/rmsnorm.py
ADDED
|
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, Tri Dao.
|
| 2 |
+
# Implement dropout + residual + layer_norm / rms_norm.
|
| 3 |
+
|
| 4 |
+
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
| 5 |
+
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
| 6 |
+
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
| 7 |
+
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.amp import custom_fwd, custom_bwd
|
| 14 |
+
|
| 15 |
+
import triton
|
| 16 |
+
import triton.language as tl
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def layer_norm_ref(
|
| 20 |
+
x,
|
| 21 |
+
weight,
|
| 22 |
+
bias,
|
| 23 |
+
residual=None,
|
| 24 |
+
x1=None,
|
| 25 |
+
weight1=None,
|
| 26 |
+
bias1=None,
|
| 27 |
+
eps=1e-6,
|
| 28 |
+
dropout_p=0.0,
|
| 29 |
+
rowscale=None,
|
| 30 |
+
prenorm=False,
|
| 31 |
+
dropout_mask=None,
|
| 32 |
+
dropout_mask1=None,
|
| 33 |
+
upcast=False,
|
| 34 |
+
):
|
| 35 |
+
dtype = x.dtype
|
| 36 |
+
if upcast:
|
| 37 |
+
x = x.float()
|
| 38 |
+
weight = weight.float()
|
| 39 |
+
bias = bias.float() if bias is not None else None
|
| 40 |
+
residual = residual.float() if residual is not None else residual
|
| 41 |
+
x1 = x1.float() if x1 is not None else None
|
| 42 |
+
weight1 = weight1.float() if weight1 is not None else None
|
| 43 |
+
bias1 = bias1.float() if bias1 is not None else None
|
| 44 |
+
if x1 is not None:
|
| 45 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 46 |
+
if rowscale is not None:
|
| 47 |
+
x = x * rowscale[..., None]
|
| 48 |
+
if dropout_p > 0.0:
|
| 49 |
+
if dropout_mask is not None:
|
| 50 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
| 51 |
+
else:
|
| 52 |
+
x = F.dropout(x, p=dropout_p)
|
| 53 |
+
if x1 is not None:
|
| 54 |
+
if dropout_mask1 is not None:
|
| 55 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
| 56 |
+
else:
|
| 57 |
+
x1 = F.dropout(x1, p=dropout_p)
|
| 58 |
+
if x1 is not None:
|
| 59 |
+
x = x + x1
|
| 60 |
+
if residual is not None:
|
| 61 |
+
x = (x + residual).to(x.dtype)
|
| 62 |
+
out = F.layer_norm(
|
| 63 |
+
x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps
|
| 64 |
+
).to(dtype)
|
| 65 |
+
if weight1 is None:
|
| 66 |
+
return out if not prenorm else (out, x)
|
| 67 |
+
else:
|
| 68 |
+
out1 = F.layer_norm(
|
| 69 |
+
x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps
|
| 70 |
+
).to(dtype)
|
| 71 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def rms_norm_ref(
|
| 75 |
+
x,
|
| 76 |
+
weight,
|
| 77 |
+
bias,
|
| 78 |
+
residual=None,
|
| 79 |
+
x1=None,
|
| 80 |
+
weight1=None,
|
| 81 |
+
bias1=None,
|
| 82 |
+
eps=1e-6,
|
| 83 |
+
dropout_p=0.0,
|
| 84 |
+
rowscale=None,
|
| 85 |
+
prenorm=False,
|
| 86 |
+
dropout_mask=None,
|
| 87 |
+
dropout_mask1=None,
|
| 88 |
+
upcast=False,
|
| 89 |
+
):
|
| 90 |
+
dtype = x.dtype
|
| 91 |
+
if upcast:
|
| 92 |
+
x = x.float()
|
| 93 |
+
weight = weight.float()
|
| 94 |
+
bias = bias.float() if bias is not None else None
|
| 95 |
+
residual = residual.float() if residual is not None else residual
|
| 96 |
+
x1 = x1.float() if x1 is not None else None
|
| 97 |
+
weight1 = weight1.float() if weight1 is not None else None
|
| 98 |
+
bias1 = bias1.float() if bias1 is not None else None
|
| 99 |
+
if x1 is not None:
|
| 100 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 101 |
+
if rowscale is not None:
|
| 102 |
+
x = x * rowscale[..., None]
|
| 103 |
+
if dropout_p > 0.0:
|
| 104 |
+
if dropout_mask is not None:
|
| 105 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
| 106 |
+
else:
|
| 107 |
+
x = F.dropout(x, p=dropout_p)
|
| 108 |
+
if x1 is not None:
|
| 109 |
+
if dropout_mask1 is not None:
|
| 110 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
| 111 |
+
else:
|
| 112 |
+
x1 = F.dropout(x1, p=dropout_p)
|
| 113 |
+
if x1 is not None:
|
| 114 |
+
x = x + x1
|
| 115 |
+
if residual is not None:
|
| 116 |
+
x = (x + residual).to(x.dtype)
|
| 117 |
+
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
| 118 |
+
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(
|
| 119 |
+
dtype
|
| 120 |
+
)
|
| 121 |
+
if weight1 is None:
|
| 122 |
+
return out if not prenorm else (out, x)
|
| 123 |
+
else:
|
| 124 |
+
out1 = (
|
| 125 |
+
(x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)
|
| 126 |
+
).to(dtype)
|
| 127 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@triton.autotune(
|
| 131 |
+
configs=[
|
| 132 |
+
triton.Config({}, num_warps=1),
|
| 133 |
+
triton.Config({}, num_warps=2),
|
| 134 |
+
triton.Config({}, num_warps=4),
|
| 135 |
+
triton.Config({}, num_warps=8),
|
| 136 |
+
triton.Config({}, num_warps=16),
|
| 137 |
+
triton.Config({}, num_warps=32),
|
| 138 |
+
],
|
| 139 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
| 140 |
+
)
|
| 141 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 142 |
+
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
| 143 |
+
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
| 144 |
+
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
| 145 |
+
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
| 146 |
+
@triton.jit
|
| 147 |
+
def _layer_norm_fwd_1pass_kernel(
|
| 148 |
+
X, # pointer to the input
|
| 149 |
+
Y, # pointer to the output
|
| 150 |
+
W, # pointer to the weights
|
| 151 |
+
B, # pointer to the biases
|
| 152 |
+
RESIDUAL, # pointer to the residual
|
| 153 |
+
X1,
|
| 154 |
+
W1,
|
| 155 |
+
B1,
|
| 156 |
+
Y1,
|
| 157 |
+
RESIDUAL_OUT, # pointer to the residual
|
| 158 |
+
ROWSCALE,
|
| 159 |
+
SEEDS, # Dropout seeds for each row
|
| 160 |
+
DROPOUT_MASK,
|
| 161 |
+
Mean, # pointer to the mean
|
| 162 |
+
Rstd, # pointer to the 1/std
|
| 163 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
| 164 |
+
stride_y_row,
|
| 165 |
+
stride_res_row,
|
| 166 |
+
stride_res_out_row,
|
| 167 |
+
stride_x1_row,
|
| 168 |
+
stride_y1_row,
|
| 169 |
+
M, # number of rows in X
|
| 170 |
+
N, # number of columns in X
|
| 171 |
+
eps, # epsilon to avoid division by zero
|
| 172 |
+
dropout_p, # Dropout probability
|
| 173 |
+
IS_RMS_NORM: tl.constexpr,
|
| 174 |
+
BLOCK_N: tl.constexpr,
|
| 175 |
+
HAS_RESIDUAL: tl.constexpr,
|
| 176 |
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
| 177 |
+
HAS_BIAS: tl.constexpr,
|
| 178 |
+
HAS_DROPOUT: tl.constexpr,
|
| 179 |
+
STORE_DROPOUT_MASK: tl.constexpr,
|
| 180 |
+
HAS_ROWSCALE: tl.constexpr,
|
| 181 |
+
HAS_X1: tl.constexpr,
|
| 182 |
+
HAS_W1: tl.constexpr,
|
| 183 |
+
HAS_B1: tl.constexpr,
|
| 184 |
+
):
|
| 185 |
+
# Map the program id to the row of X and Y it should compute.
|
| 186 |
+
row = tl.program_id(0)
|
| 187 |
+
X += row * stride_x_row
|
| 188 |
+
Y += row * stride_y_row
|
| 189 |
+
if HAS_RESIDUAL:
|
| 190 |
+
RESIDUAL += row * stride_res_row
|
| 191 |
+
if STORE_RESIDUAL_OUT:
|
| 192 |
+
RESIDUAL_OUT += row * stride_res_out_row
|
| 193 |
+
if HAS_X1:
|
| 194 |
+
X1 += row * stride_x1_row
|
| 195 |
+
if HAS_W1:
|
| 196 |
+
Y1 += row * stride_y1_row
|
| 197 |
+
# Compute mean and variance
|
| 198 |
+
cols = tl.arange(0, BLOCK_N)
|
| 199 |
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 200 |
+
if HAS_ROWSCALE:
|
| 201 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
| 202 |
+
x *= rowscale
|
| 203 |
+
if HAS_DROPOUT:
|
| 204 |
+
# Compute dropout mask
|
| 205 |
+
# 7 rounds is good enough, and reduces register pressure
|
| 206 |
+
keep_mask = (
|
| 207 |
+
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
| 208 |
+
)
|
| 209 |
+
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
| 210 |
+
if STORE_DROPOUT_MASK:
|
| 211 |
+
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
| 212 |
+
if HAS_X1:
|
| 213 |
+
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 214 |
+
if HAS_ROWSCALE:
|
| 215 |
+
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
|
| 216 |
+
x1 *= rowscale
|
| 217 |
+
if HAS_DROPOUT:
|
| 218 |
+
# Compute dropout mask
|
| 219 |
+
# 7 rounds is good enough, and reduces register pressure
|
| 220 |
+
keep_mask = (
|
| 221 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 222 |
+
> dropout_p
|
| 223 |
+
)
|
| 224 |
+
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
| 225 |
+
if STORE_DROPOUT_MASK:
|
| 226 |
+
tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N)
|
| 227 |
+
x += x1
|
| 228 |
+
if HAS_RESIDUAL:
|
| 229 |
+
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 230 |
+
x += residual
|
| 231 |
+
if STORE_RESIDUAL_OUT:
|
| 232 |
+
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
| 233 |
+
if not IS_RMS_NORM:
|
| 234 |
+
mean = tl.sum(x, axis=0) / N
|
| 235 |
+
tl.store(Mean + row, mean)
|
| 236 |
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
| 237 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
| 238 |
+
else:
|
| 239 |
+
xbar = tl.where(cols < N, x, 0.0)
|
| 240 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
| 241 |
+
rstd = 1 / tl.sqrt(var + eps)
|
| 242 |
+
tl.store(Rstd + row, rstd)
|
| 243 |
+
# Normalize and apply linear transformation
|
| 244 |
+
mask = cols < N
|
| 245 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 246 |
+
if HAS_BIAS:
|
| 247 |
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
| 248 |
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
| 249 |
+
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
| 250 |
+
# Write output
|
| 251 |
+
tl.store(Y + cols, y, mask=mask)
|
| 252 |
+
if HAS_W1:
|
| 253 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 254 |
+
if HAS_B1:
|
| 255 |
+
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
| 256 |
+
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
| 257 |
+
tl.store(Y1 + cols, y1, mask=mask)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def _layer_norm_fwd(
|
| 261 |
+
x,
|
| 262 |
+
weight,
|
| 263 |
+
bias,
|
| 264 |
+
eps,
|
| 265 |
+
residual=None,
|
| 266 |
+
x1=None,
|
| 267 |
+
weight1=None,
|
| 268 |
+
bias1=None,
|
| 269 |
+
dropout_p=0.0,
|
| 270 |
+
rowscale=None,
|
| 271 |
+
out_dtype=None,
|
| 272 |
+
residual_dtype=None,
|
| 273 |
+
is_rms_norm=False,
|
| 274 |
+
return_dropout_mask=False,
|
| 275 |
+
out=None,
|
| 276 |
+
residual_out=None,
|
| 277 |
+
):
|
| 278 |
+
if residual is not None:
|
| 279 |
+
residual_dtype = residual.dtype
|
| 280 |
+
M, N = x.shape
|
| 281 |
+
assert x.stride(-1) == 1
|
| 282 |
+
if residual is not None:
|
| 283 |
+
assert residual.stride(-1) == 1
|
| 284 |
+
assert residual.shape == (M, N)
|
| 285 |
+
assert weight.shape == (N,)
|
| 286 |
+
assert weight.stride(-1) == 1
|
| 287 |
+
if bias is not None:
|
| 288 |
+
assert bias.stride(-1) == 1
|
| 289 |
+
assert bias.shape == (N,)
|
| 290 |
+
if x1 is not None:
|
| 291 |
+
assert x1.shape == x.shape
|
| 292 |
+
assert rowscale is None
|
| 293 |
+
assert x1.stride(-1) == 1
|
| 294 |
+
if weight1 is not None:
|
| 295 |
+
assert weight1.shape == (N,)
|
| 296 |
+
assert weight1.stride(-1) == 1
|
| 297 |
+
if bias1 is not None:
|
| 298 |
+
assert bias1.shape == (N,)
|
| 299 |
+
assert bias1.stride(-1) == 1
|
| 300 |
+
if rowscale is not None:
|
| 301 |
+
assert rowscale.is_contiguous()
|
| 302 |
+
assert rowscale.shape == (M,)
|
| 303 |
+
# allocate output
|
| 304 |
+
if out is None:
|
| 305 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
| 306 |
+
else:
|
| 307 |
+
assert out.shape == x.shape
|
| 308 |
+
assert out.stride(-1) == 1
|
| 309 |
+
if weight1 is not None:
|
| 310 |
+
y1 = torch.empty_like(out)
|
| 311 |
+
assert y1.stride(-1) == 1
|
| 312 |
+
else:
|
| 313 |
+
y1 = None
|
| 314 |
+
if (
|
| 315 |
+
residual is not None
|
| 316 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
| 317 |
+
or dropout_p > 0.0
|
| 318 |
+
or rowscale is not None
|
| 319 |
+
or x1 is not None
|
| 320 |
+
):
|
| 321 |
+
if residual_out is None:
|
| 322 |
+
residual_out = torch.empty(
|
| 323 |
+
M,
|
| 324 |
+
N,
|
| 325 |
+
device=x.device,
|
| 326 |
+
dtype=residual_dtype if residual_dtype is not None else x.dtype,
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
assert residual_out.shape == x.shape
|
| 330 |
+
assert residual_out.stride(-1) == 1
|
| 331 |
+
else:
|
| 332 |
+
residual_out = None
|
| 333 |
+
mean = (
|
| 334 |
+
torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 335 |
+
if not is_rms_norm
|
| 336 |
+
else None
|
| 337 |
+
)
|
| 338 |
+
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 339 |
+
if dropout_p > 0.0:
|
| 340 |
+
seeds = torch.randint(
|
| 341 |
+
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
|
| 342 |
+
)
|
| 343 |
+
else:
|
| 344 |
+
seeds = None
|
| 345 |
+
if return_dropout_mask and dropout_p > 0.0:
|
| 346 |
+
dropout_mask = torch.empty(
|
| 347 |
+
M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool
|
| 348 |
+
)
|
| 349 |
+
else:
|
| 350 |
+
dropout_mask = None
|
| 351 |
+
# Less than 64KB per feature: enqueue fused kernel
|
| 352 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 353 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 354 |
+
if N > BLOCK_N:
|
| 355 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 356 |
+
with torch.cuda.device(x.device.index):
|
| 357 |
+
_layer_norm_fwd_1pass_kernel[(M,)](
|
| 358 |
+
x,
|
| 359 |
+
out,
|
| 360 |
+
weight,
|
| 361 |
+
bias,
|
| 362 |
+
residual,
|
| 363 |
+
x1,
|
| 364 |
+
weight1,
|
| 365 |
+
bias1,
|
| 366 |
+
y1,
|
| 367 |
+
residual_out,
|
| 368 |
+
rowscale,
|
| 369 |
+
seeds,
|
| 370 |
+
dropout_mask,
|
| 371 |
+
mean,
|
| 372 |
+
rstd,
|
| 373 |
+
x.stride(0),
|
| 374 |
+
out.stride(0),
|
| 375 |
+
residual.stride(0) if residual is not None else 0,
|
| 376 |
+
residual_out.stride(0) if residual_out is not None else 0,
|
| 377 |
+
x1.stride(0) if x1 is not None else 0,
|
| 378 |
+
y1.stride(0) if y1 is not None else 0,
|
| 379 |
+
M,
|
| 380 |
+
N,
|
| 381 |
+
eps,
|
| 382 |
+
dropout_p,
|
| 383 |
+
is_rms_norm,
|
| 384 |
+
BLOCK_N,
|
| 385 |
+
residual is not None,
|
| 386 |
+
residual_out is not None,
|
| 387 |
+
bias is not None,
|
| 388 |
+
dropout_p > 0.0,
|
| 389 |
+
dropout_mask is not None,
|
| 390 |
+
rowscale is not None,
|
| 391 |
+
)
|
| 392 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
| 393 |
+
if dropout_mask is not None and x1 is not None:
|
| 394 |
+
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
|
| 395 |
+
else:
|
| 396 |
+
dropout_mask1 = None
|
| 397 |
+
return (
|
| 398 |
+
out,
|
| 399 |
+
y1,
|
| 400 |
+
mean,
|
| 401 |
+
rstd,
|
| 402 |
+
residual_out if residual_out is not None else x,
|
| 403 |
+
seeds,
|
| 404 |
+
dropout_mask,
|
| 405 |
+
dropout_mask1,
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
@triton.autotune(
|
| 410 |
+
configs=[
|
| 411 |
+
triton.Config({}, num_warps=1),
|
| 412 |
+
triton.Config({}, num_warps=2),
|
| 413 |
+
triton.Config({}, num_warps=4),
|
| 414 |
+
triton.Config({}, num_warps=8),
|
| 415 |
+
triton.Config({}, num_warps=16),
|
| 416 |
+
triton.Config({}, num_warps=32),
|
| 417 |
+
],
|
| 418 |
+
key=[
|
| 419 |
+
"N",
|
| 420 |
+
"HAS_DRESIDUAL",
|
| 421 |
+
"STORE_DRESIDUAL",
|
| 422 |
+
"IS_RMS_NORM",
|
| 423 |
+
"HAS_BIAS",
|
| 424 |
+
"HAS_DROPOUT",
|
| 425 |
+
],
|
| 426 |
+
)
|
| 427 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 428 |
+
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
| 429 |
+
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
| 430 |
+
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
| 431 |
+
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
| 432 |
+
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
| 433 |
+
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
| 434 |
+
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
| 435 |
+
@triton.jit
|
| 436 |
+
def _layer_norm_bwd_kernel(
|
| 437 |
+
X, # pointer to the input
|
| 438 |
+
W, # pointer to the weights
|
| 439 |
+
B, # pointer to the biases
|
| 440 |
+
Y, # pointer to the output to be recomputed
|
| 441 |
+
DY, # pointer to the output gradient
|
| 442 |
+
DX, # pointer to the input gradient
|
| 443 |
+
DW, # pointer to the partial sum of weights gradient
|
| 444 |
+
DB, # pointer to the partial sum of biases gradient
|
| 445 |
+
DRESIDUAL,
|
| 446 |
+
W1,
|
| 447 |
+
DY1,
|
| 448 |
+
DX1,
|
| 449 |
+
DW1,
|
| 450 |
+
DB1,
|
| 451 |
+
DRESIDUAL_IN,
|
| 452 |
+
ROWSCALE,
|
| 453 |
+
SEEDS,
|
| 454 |
+
Mean, # pointer to the mean
|
| 455 |
+
Rstd, # pointer to the 1/std
|
| 456 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
| 457 |
+
stride_y_row,
|
| 458 |
+
stride_dy_row,
|
| 459 |
+
stride_dx_row,
|
| 460 |
+
stride_dres_row,
|
| 461 |
+
stride_dy1_row,
|
| 462 |
+
stride_dx1_row,
|
| 463 |
+
stride_dres_in_row,
|
| 464 |
+
M, # number of rows in X
|
| 465 |
+
N, # number of columns in X
|
| 466 |
+
eps, # epsilon to avoid division by zero
|
| 467 |
+
dropout_p,
|
| 468 |
+
rows_per_program,
|
| 469 |
+
IS_RMS_NORM: tl.constexpr,
|
| 470 |
+
BLOCK_N: tl.constexpr,
|
| 471 |
+
HAS_DRESIDUAL: tl.constexpr,
|
| 472 |
+
STORE_DRESIDUAL: tl.constexpr,
|
| 473 |
+
HAS_BIAS: tl.constexpr,
|
| 474 |
+
HAS_DROPOUT: tl.constexpr,
|
| 475 |
+
HAS_ROWSCALE: tl.constexpr,
|
| 476 |
+
HAS_DY1: tl.constexpr,
|
| 477 |
+
HAS_DX1: tl.constexpr,
|
| 478 |
+
HAS_B1: tl.constexpr,
|
| 479 |
+
RECOMPUTE_OUTPUT: tl.constexpr,
|
| 480 |
+
):
|
| 481 |
+
# Map the program id to the elements of X, DX, and DY it should compute.
|
| 482 |
+
row_block_id = tl.program_id(0)
|
| 483 |
+
row_start = row_block_id * rows_per_program
|
| 484 |
+
# Do not early exit if row_start >= M, because we need to write DW and DB
|
| 485 |
+
cols = tl.arange(0, BLOCK_N)
|
| 486 |
+
mask = cols < N
|
| 487 |
+
X += row_start * stride_x_row
|
| 488 |
+
if HAS_DRESIDUAL:
|
| 489 |
+
DRESIDUAL += row_start * stride_dres_row
|
| 490 |
+
if STORE_DRESIDUAL:
|
| 491 |
+
DRESIDUAL_IN += row_start * stride_dres_in_row
|
| 492 |
+
DY += row_start * stride_dy_row
|
| 493 |
+
DX += row_start * stride_dx_row
|
| 494 |
+
if HAS_DY1:
|
| 495 |
+
DY1 += row_start * stride_dy1_row
|
| 496 |
+
if HAS_DX1:
|
| 497 |
+
DX1 += row_start * stride_dx1_row
|
| 498 |
+
if RECOMPUTE_OUTPUT:
|
| 499 |
+
Y += row_start * stride_y_row
|
| 500 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 501 |
+
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
| 502 |
+
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
| 503 |
+
if HAS_DY1:
|
| 504 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 505 |
+
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 506 |
+
if HAS_BIAS:
|
| 507 |
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 508 |
+
if HAS_DY1:
|
| 509 |
+
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 510 |
+
if HAS_B1:
|
| 511 |
+
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 512 |
+
row_end = min((row_block_id + 1) * rows_per_program, M)
|
| 513 |
+
for row in range(row_start, row_end):
|
| 514 |
+
# Load data to SRAM
|
| 515 |
+
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
| 516 |
+
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
| 517 |
+
if HAS_DY1:
|
| 518 |
+
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
|
| 519 |
+
if not IS_RMS_NORM:
|
| 520 |
+
mean = tl.load(Mean + row)
|
| 521 |
+
rstd = tl.load(Rstd + row)
|
| 522 |
+
# Compute dx
|
| 523 |
+
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
| 524 |
+
xhat = tl.where(mask, xhat, 0.0)
|
| 525 |
+
if RECOMPUTE_OUTPUT:
|
| 526 |
+
y = xhat * w + b if HAS_BIAS else xhat * w
|
| 527 |
+
tl.store(Y + cols, y, mask=mask)
|
| 528 |
+
wdy = w * dy
|
| 529 |
+
dw += dy * xhat
|
| 530 |
+
if HAS_BIAS:
|
| 531 |
+
db += dy
|
| 532 |
+
if HAS_DY1:
|
| 533 |
+
wdy += w1 * dy1
|
| 534 |
+
dw1 += dy1 * xhat
|
| 535 |
+
if HAS_B1:
|
| 536 |
+
db1 += dy1
|
| 537 |
+
if not IS_RMS_NORM:
|
| 538 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
| 539 |
+
c2 = tl.sum(wdy, axis=0) / N
|
| 540 |
+
dx = (wdy - (xhat * c1 + c2)) * rstd
|
| 541 |
+
else:
|
| 542 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
| 543 |
+
dx = (wdy - xhat * c1) * rstd
|
| 544 |
+
if HAS_DRESIDUAL:
|
| 545 |
+
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
| 546 |
+
dx += dres
|
| 547 |
+
# Write dx
|
| 548 |
+
if STORE_DRESIDUAL:
|
| 549 |
+
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
| 550 |
+
if HAS_DX1:
|
| 551 |
+
if HAS_DROPOUT:
|
| 552 |
+
keep_mask = (
|
| 553 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 554 |
+
> dropout_p
|
| 555 |
+
)
|
| 556 |
+
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 557 |
+
else:
|
| 558 |
+
dx1 = dx
|
| 559 |
+
tl.store(DX1 + cols, dx1, mask=mask)
|
| 560 |
+
if HAS_DROPOUT:
|
| 561 |
+
keep_mask = (
|
| 562 |
+
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7)
|
| 563 |
+
> dropout_p
|
| 564 |
+
)
|
| 565 |
+
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 566 |
+
if HAS_ROWSCALE:
|
| 567 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
| 568 |
+
dx *= rowscale
|
| 569 |
+
tl.store(DX + cols, dx, mask=mask)
|
| 570 |
+
|
| 571 |
+
X += stride_x_row
|
| 572 |
+
if HAS_DRESIDUAL:
|
| 573 |
+
DRESIDUAL += stride_dres_row
|
| 574 |
+
if STORE_DRESIDUAL:
|
| 575 |
+
DRESIDUAL_IN += stride_dres_in_row
|
| 576 |
+
if RECOMPUTE_OUTPUT:
|
| 577 |
+
Y += stride_y_row
|
| 578 |
+
DY += stride_dy_row
|
| 579 |
+
DX += stride_dx_row
|
| 580 |
+
if HAS_DY1:
|
| 581 |
+
DY1 += stride_dy1_row
|
| 582 |
+
if HAS_DX1:
|
| 583 |
+
DX1 += stride_dx1_row
|
| 584 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
| 585 |
+
if HAS_BIAS:
|
| 586 |
+
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
| 587 |
+
if HAS_DY1:
|
| 588 |
+
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
|
| 589 |
+
if HAS_B1:
|
| 590 |
+
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def _layer_norm_bwd(
|
| 594 |
+
dy,
|
| 595 |
+
x,
|
| 596 |
+
weight,
|
| 597 |
+
bias,
|
| 598 |
+
eps,
|
| 599 |
+
mean,
|
| 600 |
+
rstd,
|
| 601 |
+
dresidual=None,
|
| 602 |
+
dy1=None,
|
| 603 |
+
weight1=None,
|
| 604 |
+
bias1=None,
|
| 605 |
+
seeds=None,
|
| 606 |
+
dropout_p=0.0,
|
| 607 |
+
rowscale=None,
|
| 608 |
+
has_residual=False,
|
| 609 |
+
has_x1=False,
|
| 610 |
+
is_rms_norm=False,
|
| 611 |
+
x_dtype=None,
|
| 612 |
+
recompute_output=False,
|
| 613 |
+
):
|
| 614 |
+
M, N = x.shape
|
| 615 |
+
assert x.stride(-1) == 1
|
| 616 |
+
assert dy.stride(-1) == 1
|
| 617 |
+
assert dy.shape == (M, N)
|
| 618 |
+
if dresidual is not None:
|
| 619 |
+
assert dresidual.stride(-1) == 1
|
| 620 |
+
assert dresidual.shape == (M, N)
|
| 621 |
+
assert weight.shape == (N,)
|
| 622 |
+
assert weight.stride(-1) == 1
|
| 623 |
+
if bias is not None:
|
| 624 |
+
assert bias.stride(-1) == 1
|
| 625 |
+
assert bias.shape == (N,)
|
| 626 |
+
if dy1 is not None:
|
| 627 |
+
assert weight1 is not None
|
| 628 |
+
assert dy1.shape == dy.shape
|
| 629 |
+
assert dy1.stride(-1) == 1
|
| 630 |
+
if weight1 is not None:
|
| 631 |
+
assert weight1.shape == (N,)
|
| 632 |
+
assert weight1.stride(-1) == 1
|
| 633 |
+
if bias1 is not None:
|
| 634 |
+
assert bias1.shape == (N,)
|
| 635 |
+
assert bias1.stride(-1) == 1
|
| 636 |
+
if seeds is not None:
|
| 637 |
+
assert seeds.is_contiguous()
|
| 638 |
+
assert seeds.shape == (M if not has_x1 else M * 2,)
|
| 639 |
+
if rowscale is not None:
|
| 640 |
+
assert rowscale.is_contiguous()
|
| 641 |
+
assert rowscale.shape == (M,)
|
| 642 |
+
# allocate output
|
| 643 |
+
dx = (
|
| 644 |
+
torch.empty_like(x)
|
| 645 |
+
if x_dtype is None
|
| 646 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
| 647 |
+
)
|
| 648 |
+
dresidual_in = (
|
| 649 |
+
torch.empty_like(x)
|
| 650 |
+
if has_residual
|
| 651 |
+
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
|
| 652 |
+
else None
|
| 653 |
+
)
|
| 654 |
+
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
| 655 |
+
y = (
|
| 656 |
+
torch.empty(M, N, dtype=dy.dtype, device=dy.device)
|
| 657 |
+
if recompute_output
|
| 658 |
+
else None
|
| 659 |
+
)
|
| 660 |
+
if recompute_output:
|
| 661 |
+
assert (
|
| 662 |
+
weight1 is None
|
| 663 |
+
), "recompute_output is not supported with parallel LayerNorm"
|
| 664 |
+
|
| 665 |
+
# Less than 64KB per feature: enqueue fused kernel
|
| 666 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 667 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 668 |
+
if N > BLOCK_N:
|
| 669 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 670 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
| 671 |
+
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
| 672 |
+
_db = (
|
| 673 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
| 674 |
+
if bias is not None
|
| 675 |
+
else None
|
| 676 |
+
)
|
| 677 |
+
_dw1 = torch.empty_like(_dw) if weight1 is not None else None
|
| 678 |
+
_db1 = torch.empty_like(_db) if bias1 is not None else None
|
| 679 |
+
rows_per_program = math.ceil(M / sm_count)
|
| 680 |
+
grid = (sm_count,)
|
| 681 |
+
with torch.cuda.device(x.device.index):
|
| 682 |
+
_layer_norm_bwd_kernel[grid](
|
| 683 |
+
x,
|
| 684 |
+
weight,
|
| 685 |
+
bias,
|
| 686 |
+
y,
|
| 687 |
+
dy,
|
| 688 |
+
dx,
|
| 689 |
+
_dw,
|
| 690 |
+
_db,
|
| 691 |
+
dresidual,
|
| 692 |
+
weight1,
|
| 693 |
+
dy1,
|
| 694 |
+
dx1,
|
| 695 |
+
_dw1,
|
| 696 |
+
_db1,
|
| 697 |
+
dresidual_in,
|
| 698 |
+
rowscale,
|
| 699 |
+
seeds,
|
| 700 |
+
mean,
|
| 701 |
+
rstd,
|
| 702 |
+
x.stride(0),
|
| 703 |
+
0 if not recompute_output else y.stride(0),
|
| 704 |
+
dy.stride(0),
|
| 705 |
+
dx.stride(0),
|
| 706 |
+
dresidual.stride(0) if dresidual is not None else 0,
|
| 707 |
+
dy1.stride(0) if dy1 is not None else 0,
|
| 708 |
+
dx1.stride(0) if dx1 is not None else 0,
|
| 709 |
+
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
| 710 |
+
M,
|
| 711 |
+
N,
|
| 712 |
+
eps,
|
| 713 |
+
dropout_p,
|
| 714 |
+
rows_per_program,
|
| 715 |
+
is_rms_norm,
|
| 716 |
+
BLOCK_N,
|
| 717 |
+
dresidual is not None,
|
| 718 |
+
dresidual_in is not None,
|
| 719 |
+
bias is not None,
|
| 720 |
+
dropout_p > 0.0,
|
| 721 |
+
)
|
| 722 |
+
dw = _dw.sum(0).to(weight.dtype)
|
| 723 |
+
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
| 724 |
+
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
| 725 |
+
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
| 726 |
+
# Don't need to compute dresidual_in separately in this case
|
| 727 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
| 728 |
+
dresidual_in = dx
|
| 729 |
+
if has_x1 and dropout_p == 0.0:
|
| 730 |
+
dx1 = dx
|
| 731 |
+
return (
|
| 732 |
+
(dx, dw, db, dresidual_in, dx1, dw1, db1)
|
| 733 |
+
if not recompute_output
|
| 734 |
+
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
class LayerNormFn(torch.autograd.Function):
|
| 739 |
+
@staticmethod
|
| 740 |
+
def forward(
|
| 741 |
+
ctx,
|
| 742 |
+
x,
|
| 743 |
+
weight,
|
| 744 |
+
bias,
|
| 745 |
+
residual=None,
|
| 746 |
+
x1=None,
|
| 747 |
+
weight1=None,
|
| 748 |
+
bias1=None,
|
| 749 |
+
eps=1e-6,
|
| 750 |
+
dropout_p=0.0,
|
| 751 |
+
rowscale=None,
|
| 752 |
+
prenorm=False,
|
| 753 |
+
residual_in_fp32=False,
|
| 754 |
+
is_rms_norm=False,
|
| 755 |
+
return_dropout_mask=False,
|
| 756 |
+
out=None,
|
| 757 |
+
residual_out=None,
|
| 758 |
+
):
|
| 759 |
+
x_shape_og = x.shape
|
| 760 |
+
# reshape input data into 2D tensor
|
| 761 |
+
x = x.reshape(-1, x.shape[-1])
|
| 762 |
+
if x.stride(-1) != 1:
|
| 763 |
+
x = x.contiguous()
|
| 764 |
+
if residual is not None:
|
| 765 |
+
assert residual.shape == x_shape_og
|
| 766 |
+
residual = residual.reshape(-1, residual.shape[-1])
|
| 767 |
+
if residual.stride(-1) != 1:
|
| 768 |
+
residual = residual.contiguous()
|
| 769 |
+
if x1 is not None:
|
| 770 |
+
assert x1.shape == x_shape_og
|
| 771 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 772 |
+
x1 = x1.reshape(-1, x1.shape[-1])
|
| 773 |
+
if x1.stride(-1) != 1:
|
| 774 |
+
x1 = x1.contiguous()
|
| 775 |
+
weight = weight.contiguous()
|
| 776 |
+
if bias is not None:
|
| 777 |
+
bias = bias.contiguous()
|
| 778 |
+
if weight1 is not None:
|
| 779 |
+
weight1 = weight1.contiguous()
|
| 780 |
+
if bias1 is not None:
|
| 781 |
+
bias1 = bias1.contiguous()
|
| 782 |
+
if rowscale is not None:
|
| 783 |
+
rowscale = rowscale.reshape(-1).contiguous()
|
| 784 |
+
residual_dtype = (
|
| 785 |
+
residual.dtype
|
| 786 |
+
if residual is not None
|
| 787 |
+
else (torch.float32 if residual_in_fp32 else None)
|
| 788 |
+
)
|
| 789 |
+
if out is not None:
|
| 790 |
+
out = out.reshape(-1, out.shape[-1])
|
| 791 |
+
if residual_out is not None:
|
| 792 |
+
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
| 793 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = (
|
| 794 |
+
_layer_norm_fwd(
|
| 795 |
+
x,
|
| 796 |
+
weight,
|
| 797 |
+
bias,
|
| 798 |
+
eps,
|
| 799 |
+
residual,
|
| 800 |
+
x1,
|
| 801 |
+
weight1,
|
| 802 |
+
bias1,
|
| 803 |
+
dropout_p=dropout_p,
|
| 804 |
+
rowscale=rowscale,
|
| 805 |
+
residual_dtype=residual_dtype,
|
| 806 |
+
is_rms_norm=is_rms_norm,
|
| 807 |
+
return_dropout_mask=return_dropout_mask,
|
| 808 |
+
out=out,
|
| 809 |
+
residual_out=residual_out,
|
| 810 |
+
)
|
| 811 |
+
)
|
| 812 |
+
ctx.save_for_backward(
|
| 813 |
+
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
| 814 |
+
)
|
| 815 |
+
ctx.x_shape_og = x_shape_og
|
| 816 |
+
ctx.eps = eps
|
| 817 |
+
ctx.dropout_p = dropout_p
|
| 818 |
+
ctx.is_rms_norm = is_rms_norm
|
| 819 |
+
ctx.has_residual = residual is not None
|
| 820 |
+
ctx.has_x1 = x1 is not None
|
| 821 |
+
ctx.prenorm = prenorm
|
| 822 |
+
ctx.x_dtype = x.dtype
|
| 823 |
+
y = y.reshape(x_shape_og)
|
| 824 |
+
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
| 825 |
+
residual_out = (
|
| 826 |
+
residual_out.reshape(x_shape_og) if residual_out is not None else None
|
| 827 |
+
)
|
| 828 |
+
dropout_mask = (
|
| 829 |
+
dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
| 830 |
+
)
|
| 831 |
+
dropout_mask1 = (
|
| 832 |
+
dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
| 833 |
+
)
|
| 834 |
+
if not return_dropout_mask:
|
| 835 |
+
if weight1 is None:
|
| 836 |
+
return y if not prenorm else (y, residual_out)
|
| 837 |
+
else:
|
| 838 |
+
return (y, y1) if not prenorm else (y, y1, residual_out)
|
| 839 |
+
else:
|
| 840 |
+
if weight1 is None:
|
| 841 |
+
return (
|
| 842 |
+
(y, dropout_mask, dropout_mask1)
|
| 843 |
+
if not prenorm
|
| 844 |
+
else (y, residual_out, dropout_mask, dropout_mask1)
|
| 845 |
+
)
|
| 846 |
+
else:
|
| 847 |
+
return (
|
| 848 |
+
(y, y1, dropout_mask, dropout_mask1)
|
| 849 |
+
if not prenorm
|
| 850 |
+
else (y, y1, residual_out, dropout_mask, dropout_mask1)
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
@staticmethod
|
| 854 |
+
def backward(ctx, dy, *args):
|
| 855 |
+
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
| 856 |
+
dy = dy.reshape(-1, dy.shape[-1])
|
| 857 |
+
if dy.stride(-1) != 1:
|
| 858 |
+
dy = dy.contiguous()
|
| 859 |
+
assert dy.shape == x.shape
|
| 860 |
+
if weight1 is not None:
|
| 861 |
+
dy1, args = args[0], args[1:]
|
| 862 |
+
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
| 863 |
+
if dy1.stride(-1) != 1:
|
| 864 |
+
dy1 = dy1.contiguous()
|
| 865 |
+
assert dy1.shape == x.shape
|
| 866 |
+
else:
|
| 867 |
+
dy1 = None
|
| 868 |
+
if ctx.prenorm:
|
| 869 |
+
dresidual = args[0]
|
| 870 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
| 871 |
+
if dresidual.stride(-1) != 1:
|
| 872 |
+
dresidual = dresidual.contiguous()
|
| 873 |
+
assert dresidual.shape == x.shape
|
| 874 |
+
else:
|
| 875 |
+
dresidual = None
|
| 876 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
|
| 877 |
+
dy,
|
| 878 |
+
x,
|
| 879 |
+
weight,
|
| 880 |
+
bias,
|
| 881 |
+
ctx.eps,
|
| 882 |
+
mean,
|
| 883 |
+
rstd,
|
| 884 |
+
dresidual,
|
| 885 |
+
dy1,
|
| 886 |
+
weight1,
|
| 887 |
+
bias1,
|
| 888 |
+
seeds,
|
| 889 |
+
ctx.dropout_p,
|
| 890 |
+
rowscale,
|
| 891 |
+
ctx.has_residual,
|
| 892 |
+
ctx.has_x1,
|
| 893 |
+
ctx.is_rms_norm,
|
| 894 |
+
x_dtype=ctx.x_dtype,
|
| 895 |
+
)
|
| 896 |
+
return (
|
| 897 |
+
dx.reshape(ctx.x_shape_og),
|
| 898 |
+
dw,
|
| 899 |
+
db,
|
| 900 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
| 901 |
+
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
|
| 902 |
+
dw1,
|
| 903 |
+
db1,
|
| 904 |
+
None,
|
| 905 |
+
None,
|
| 906 |
+
None,
|
| 907 |
+
None,
|
| 908 |
+
None,
|
| 909 |
+
None,
|
| 910 |
+
None,
|
| 911 |
+
None,
|
| 912 |
+
None,
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
def layer_norm_fn(
|
| 917 |
+
x,
|
| 918 |
+
weight,
|
| 919 |
+
bias,
|
| 920 |
+
residual=None,
|
| 921 |
+
x1=None,
|
| 922 |
+
weight1=None,
|
| 923 |
+
bias1=None,
|
| 924 |
+
eps=1e-6,
|
| 925 |
+
dropout_p=0.0,
|
| 926 |
+
rowscale=None,
|
| 927 |
+
prenorm=False,
|
| 928 |
+
residual_in_fp32=False,
|
| 929 |
+
is_rms_norm=False,
|
| 930 |
+
return_dropout_mask=False,
|
| 931 |
+
out=None,
|
| 932 |
+
residual_out=None,
|
| 933 |
+
):
|
| 934 |
+
return LayerNormFn.apply(
|
| 935 |
+
x,
|
| 936 |
+
weight,
|
| 937 |
+
bias,
|
| 938 |
+
residual,
|
| 939 |
+
x1,
|
| 940 |
+
weight1,
|
| 941 |
+
bias1,
|
| 942 |
+
eps,
|
| 943 |
+
dropout_p,
|
| 944 |
+
rowscale,
|
| 945 |
+
prenorm,
|
| 946 |
+
residual_in_fp32,
|
| 947 |
+
is_rms_norm,
|
| 948 |
+
return_dropout_mask,
|
| 949 |
+
out,
|
| 950 |
+
residual_out,
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
def rms_norm_fn(
|
| 955 |
+
x,
|
| 956 |
+
weight,
|
| 957 |
+
bias,
|
| 958 |
+
residual=None,
|
| 959 |
+
x1=None,
|
| 960 |
+
weight1=None,
|
| 961 |
+
bias1=None,
|
| 962 |
+
eps=1e-6,
|
| 963 |
+
dropout_p=0.0,
|
| 964 |
+
rowscale=None,
|
| 965 |
+
prenorm=False,
|
| 966 |
+
residual_in_fp32=False,
|
| 967 |
+
return_dropout_mask=False,
|
| 968 |
+
out=None,
|
| 969 |
+
residual_out=None,
|
| 970 |
+
):
|
| 971 |
+
return LayerNormFn.apply(
|
| 972 |
+
x,
|
| 973 |
+
weight,
|
| 974 |
+
bias,
|
| 975 |
+
residual,
|
| 976 |
+
x1,
|
| 977 |
+
weight1,
|
| 978 |
+
bias1,
|
| 979 |
+
eps,
|
| 980 |
+
dropout_p,
|
| 981 |
+
rowscale,
|
| 982 |
+
prenorm,
|
| 983 |
+
residual_in_fp32,
|
| 984 |
+
True,
|
| 985 |
+
return_dropout_mask,
|
| 986 |
+
out,
|
| 987 |
+
residual_out,
|
| 988 |
+
)
|
build.toml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[general]
|
| 2 |
+
name = "rmsnorm"
|
| 3 |
+
|
| 4 |
+
[torch]
|
| 5 |
+
universal = true
|
flake.nix
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
description = "Flake for Triton layer norm kernels";
|
| 3 |
+
|
| 4 |
+
inputs = {
|
| 5 |
+
kernel-builder.url = "github:huggingface/kernel-builder";
|
| 6 |
+
};
|
| 7 |
+
|
| 8 |
+
outputs =
|
| 9 |
+
{
|
| 10 |
+
self,
|
| 11 |
+
kernel-builder,
|
| 12 |
+
}:
|
| 13 |
+
kernel-builder.lib.genFlakeOutputs {
|
| 14 |
+
path = ./.;
|
| 15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
| 16 |
+
};
|
| 17 |
+
}
|
torch-ext/rmsnorm/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .rmsnorm import rms_norm_fn
|
| 2 |
+
|
| 3 |
+
from . import layers
|
| 4 |
+
|
| 5 |
+
__all__ = ["layers", "rms_norm_fn"]
|
torch-ext/rmsnorm/layers.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
from .rmsnorm import rms_norm_fn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class RMSNorm(nn.Module):
|
| 8 |
+
weight: torch.Tensor
|
| 9 |
+
variance_epsilon: float
|
| 10 |
+
|
| 11 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 12 |
+
return rms_norm_fn(
|
| 13 |
+
hidden_states,
|
| 14 |
+
self.weight,
|
| 15 |
+
bias=None,
|
| 16 |
+
residual=None,
|
| 17 |
+
eps=self.variance_epsilon,
|
| 18 |
+
dropout_p=0.0,
|
| 19 |
+
prenorm=False,
|
| 20 |
+
residual_in_fp32=False,
|
| 21 |
+
) # type: ignore
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
__all__ = ["RMSNorm"]
|
torch-ext/rmsnorm/rmsnorm.py
ADDED
|
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, Tri Dao.
|
| 2 |
+
# Implement dropout + residual + layer_norm / rms_norm.
|
| 3 |
+
|
| 4 |
+
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
| 5 |
+
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
| 6 |
+
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
| 7 |
+
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.amp import custom_fwd, custom_bwd
|
| 14 |
+
|
| 15 |
+
import triton
|
| 16 |
+
import triton.language as tl
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def layer_norm_ref(
|
| 20 |
+
x,
|
| 21 |
+
weight,
|
| 22 |
+
bias,
|
| 23 |
+
residual=None,
|
| 24 |
+
x1=None,
|
| 25 |
+
weight1=None,
|
| 26 |
+
bias1=None,
|
| 27 |
+
eps=1e-6,
|
| 28 |
+
dropout_p=0.0,
|
| 29 |
+
rowscale=None,
|
| 30 |
+
prenorm=False,
|
| 31 |
+
dropout_mask=None,
|
| 32 |
+
dropout_mask1=None,
|
| 33 |
+
upcast=False,
|
| 34 |
+
):
|
| 35 |
+
dtype = x.dtype
|
| 36 |
+
if upcast:
|
| 37 |
+
x = x.float()
|
| 38 |
+
weight = weight.float()
|
| 39 |
+
bias = bias.float() if bias is not None else None
|
| 40 |
+
residual = residual.float() if residual is not None else residual
|
| 41 |
+
x1 = x1.float() if x1 is not None else None
|
| 42 |
+
weight1 = weight1.float() if weight1 is not None else None
|
| 43 |
+
bias1 = bias1.float() if bias1 is not None else None
|
| 44 |
+
if x1 is not None:
|
| 45 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 46 |
+
if rowscale is not None:
|
| 47 |
+
x = x * rowscale[..., None]
|
| 48 |
+
if dropout_p > 0.0:
|
| 49 |
+
if dropout_mask is not None:
|
| 50 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
| 51 |
+
else:
|
| 52 |
+
x = F.dropout(x, p=dropout_p)
|
| 53 |
+
if x1 is not None:
|
| 54 |
+
if dropout_mask1 is not None:
|
| 55 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
| 56 |
+
else:
|
| 57 |
+
x1 = F.dropout(x1, p=dropout_p)
|
| 58 |
+
if x1 is not None:
|
| 59 |
+
x = x + x1
|
| 60 |
+
if residual is not None:
|
| 61 |
+
x = (x + residual).to(x.dtype)
|
| 62 |
+
out = F.layer_norm(
|
| 63 |
+
x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps
|
| 64 |
+
).to(dtype)
|
| 65 |
+
if weight1 is None:
|
| 66 |
+
return out if not prenorm else (out, x)
|
| 67 |
+
else:
|
| 68 |
+
out1 = F.layer_norm(
|
| 69 |
+
x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps
|
| 70 |
+
).to(dtype)
|
| 71 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def rms_norm_ref(
|
| 75 |
+
x,
|
| 76 |
+
weight,
|
| 77 |
+
bias,
|
| 78 |
+
residual=None,
|
| 79 |
+
x1=None,
|
| 80 |
+
weight1=None,
|
| 81 |
+
bias1=None,
|
| 82 |
+
eps=1e-6,
|
| 83 |
+
dropout_p=0.0,
|
| 84 |
+
rowscale=None,
|
| 85 |
+
prenorm=False,
|
| 86 |
+
dropout_mask=None,
|
| 87 |
+
dropout_mask1=None,
|
| 88 |
+
upcast=False,
|
| 89 |
+
):
|
| 90 |
+
dtype = x.dtype
|
| 91 |
+
if upcast:
|
| 92 |
+
x = x.float()
|
| 93 |
+
weight = weight.float()
|
| 94 |
+
bias = bias.float() if bias is not None else None
|
| 95 |
+
residual = residual.float() if residual is not None else residual
|
| 96 |
+
x1 = x1.float() if x1 is not None else None
|
| 97 |
+
weight1 = weight1.float() if weight1 is not None else None
|
| 98 |
+
bias1 = bias1.float() if bias1 is not None else None
|
| 99 |
+
if x1 is not None:
|
| 100 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 101 |
+
if rowscale is not None:
|
| 102 |
+
x = x * rowscale[..., None]
|
| 103 |
+
if dropout_p > 0.0:
|
| 104 |
+
if dropout_mask is not None:
|
| 105 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
| 106 |
+
else:
|
| 107 |
+
x = F.dropout(x, p=dropout_p)
|
| 108 |
+
if x1 is not None:
|
| 109 |
+
if dropout_mask1 is not None:
|
| 110 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
| 111 |
+
else:
|
| 112 |
+
x1 = F.dropout(x1, p=dropout_p)
|
| 113 |
+
if x1 is not None:
|
| 114 |
+
x = x + x1
|
| 115 |
+
if residual is not None:
|
| 116 |
+
x = (x + residual).to(x.dtype)
|
| 117 |
+
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
| 118 |
+
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(
|
| 119 |
+
dtype
|
| 120 |
+
)
|
| 121 |
+
if weight1 is None:
|
| 122 |
+
return out if not prenorm else (out, x)
|
| 123 |
+
else:
|
| 124 |
+
out1 = (
|
| 125 |
+
(x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)
|
| 126 |
+
).to(dtype)
|
| 127 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@triton.autotune(
|
| 131 |
+
configs=[
|
| 132 |
+
triton.Config({}, num_warps=1),
|
| 133 |
+
triton.Config({}, num_warps=2),
|
| 134 |
+
triton.Config({}, num_warps=4),
|
| 135 |
+
triton.Config({}, num_warps=8),
|
| 136 |
+
triton.Config({}, num_warps=16),
|
| 137 |
+
triton.Config({}, num_warps=32),
|
| 138 |
+
],
|
| 139 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
| 140 |
+
)
|
| 141 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 142 |
+
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
| 143 |
+
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
| 144 |
+
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
| 145 |
+
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
| 146 |
+
@triton.jit
|
| 147 |
+
def _layer_norm_fwd_1pass_kernel(
|
| 148 |
+
X, # pointer to the input
|
| 149 |
+
Y, # pointer to the output
|
| 150 |
+
W, # pointer to the weights
|
| 151 |
+
B, # pointer to the biases
|
| 152 |
+
RESIDUAL, # pointer to the residual
|
| 153 |
+
X1,
|
| 154 |
+
W1,
|
| 155 |
+
B1,
|
| 156 |
+
Y1,
|
| 157 |
+
RESIDUAL_OUT, # pointer to the residual
|
| 158 |
+
ROWSCALE,
|
| 159 |
+
SEEDS, # Dropout seeds for each row
|
| 160 |
+
DROPOUT_MASK,
|
| 161 |
+
Mean, # pointer to the mean
|
| 162 |
+
Rstd, # pointer to the 1/std
|
| 163 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
| 164 |
+
stride_y_row,
|
| 165 |
+
stride_res_row,
|
| 166 |
+
stride_res_out_row,
|
| 167 |
+
stride_x1_row,
|
| 168 |
+
stride_y1_row,
|
| 169 |
+
M, # number of rows in X
|
| 170 |
+
N, # number of columns in X
|
| 171 |
+
eps, # epsilon to avoid division by zero
|
| 172 |
+
dropout_p, # Dropout probability
|
| 173 |
+
IS_RMS_NORM: tl.constexpr,
|
| 174 |
+
BLOCK_N: tl.constexpr,
|
| 175 |
+
HAS_RESIDUAL: tl.constexpr,
|
| 176 |
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
| 177 |
+
HAS_BIAS: tl.constexpr,
|
| 178 |
+
HAS_DROPOUT: tl.constexpr,
|
| 179 |
+
STORE_DROPOUT_MASK: tl.constexpr,
|
| 180 |
+
HAS_ROWSCALE: tl.constexpr,
|
| 181 |
+
HAS_X1: tl.constexpr,
|
| 182 |
+
HAS_W1: tl.constexpr,
|
| 183 |
+
HAS_B1: tl.constexpr,
|
| 184 |
+
):
|
| 185 |
+
# Map the program id to the row of X and Y it should compute.
|
| 186 |
+
row = tl.program_id(0)
|
| 187 |
+
X += row * stride_x_row
|
| 188 |
+
Y += row * stride_y_row
|
| 189 |
+
if HAS_RESIDUAL:
|
| 190 |
+
RESIDUAL += row * stride_res_row
|
| 191 |
+
if STORE_RESIDUAL_OUT:
|
| 192 |
+
RESIDUAL_OUT += row * stride_res_out_row
|
| 193 |
+
if HAS_X1:
|
| 194 |
+
X1 += row * stride_x1_row
|
| 195 |
+
if HAS_W1:
|
| 196 |
+
Y1 += row * stride_y1_row
|
| 197 |
+
# Compute mean and variance
|
| 198 |
+
cols = tl.arange(0, BLOCK_N)
|
| 199 |
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 200 |
+
if HAS_ROWSCALE:
|
| 201 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
| 202 |
+
x *= rowscale
|
| 203 |
+
if HAS_DROPOUT:
|
| 204 |
+
# Compute dropout mask
|
| 205 |
+
# 7 rounds is good enough, and reduces register pressure
|
| 206 |
+
keep_mask = (
|
| 207 |
+
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
| 208 |
+
)
|
| 209 |
+
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
| 210 |
+
if STORE_DROPOUT_MASK:
|
| 211 |
+
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
| 212 |
+
if HAS_X1:
|
| 213 |
+
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 214 |
+
if HAS_ROWSCALE:
|
| 215 |
+
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
|
| 216 |
+
x1 *= rowscale
|
| 217 |
+
if HAS_DROPOUT:
|
| 218 |
+
# Compute dropout mask
|
| 219 |
+
# 7 rounds is good enough, and reduces register pressure
|
| 220 |
+
keep_mask = (
|
| 221 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 222 |
+
> dropout_p
|
| 223 |
+
)
|
| 224 |
+
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
| 225 |
+
if STORE_DROPOUT_MASK:
|
| 226 |
+
tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N)
|
| 227 |
+
x += x1
|
| 228 |
+
if HAS_RESIDUAL:
|
| 229 |
+
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
| 230 |
+
x += residual
|
| 231 |
+
if STORE_RESIDUAL_OUT:
|
| 232 |
+
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
| 233 |
+
if not IS_RMS_NORM:
|
| 234 |
+
mean = tl.sum(x, axis=0) / N
|
| 235 |
+
tl.store(Mean + row, mean)
|
| 236 |
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
| 237 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
| 238 |
+
else:
|
| 239 |
+
xbar = tl.where(cols < N, x, 0.0)
|
| 240 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
| 241 |
+
rstd = 1 / tl.sqrt(var + eps)
|
| 242 |
+
tl.store(Rstd + row, rstd)
|
| 243 |
+
# Normalize and apply linear transformation
|
| 244 |
+
mask = cols < N
|
| 245 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 246 |
+
if HAS_BIAS:
|
| 247 |
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
| 248 |
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
| 249 |
+
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
| 250 |
+
# Write output
|
| 251 |
+
tl.store(Y + cols, y, mask=mask)
|
| 252 |
+
if HAS_W1:
|
| 253 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 254 |
+
if HAS_B1:
|
| 255 |
+
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
| 256 |
+
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
| 257 |
+
tl.store(Y1 + cols, y1, mask=mask)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def _layer_norm_fwd(
|
| 261 |
+
x,
|
| 262 |
+
weight,
|
| 263 |
+
bias,
|
| 264 |
+
eps,
|
| 265 |
+
residual=None,
|
| 266 |
+
x1=None,
|
| 267 |
+
weight1=None,
|
| 268 |
+
bias1=None,
|
| 269 |
+
dropout_p=0.0,
|
| 270 |
+
rowscale=None,
|
| 271 |
+
out_dtype=None,
|
| 272 |
+
residual_dtype=None,
|
| 273 |
+
is_rms_norm=False,
|
| 274 |
+
return_dropout_mask=False,
|
| 275 |
+
out=None,
|
| 276 |
+
residual_out=None,
|
| 277 |
+
):
|
| 278 |
+
if residual is not None:
|
| 279 |
+
residual_dtype = residual.dtype
|
| 280 |
+
M, N = x.shape
|
| 281 |
+
assert x.stride(-1) == 1
|
| 282 |
+
if residual is not None:
|
| 283 |
+
assert residual.stride(-1) == 1
|
| 284 |
+
assert residual.shape == (M, N)
|
| 285 |
+
assert weight.shape == (N,)
|
| 286 |
+
assert weight.stride(-1) == 1
|
| 287 |
+
if bias is not None:
|
| 288 |
+
assert bias.stride(-1) == 1
|
| 289 |
+
assert bias.shape == (N,)
|
| 290 |
+
if x1 is not None:
|
| 291 |
+
assert x1.shape == x.shape
|
| 292 |
+
assert rowscale is None
|
| 293 |
+
assert x1.stride(-1) == 1
|
| 294 |
+
if weight1 is not None:
|
| 295 |
+
assert weight1.shape == (N,)
|
| 296 |
+
assert weight1.stride(-1) == 1
|
| 297 |
+
if bias1 is not None:
|
| 298 |
+
assert bias1.shape == (N,)
|
| 299 |
+
assert bias1.stride(-1) == 1
|
| 300 |
+
if rowscale is not None:
|
| 301 |
+
assert rowscale.is_contiguous()
|
| 302 |
+
assert rowscale.shape == (M,)
|
| 303 |
+
# allocate output
|
| 304 |
+
if out is None:
|
| 305 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
| 306 |
+
else:
|
| 307 |
+
assert out.shape == x.shape
|
| 308 |
+
assert out.stride(-1) == 1
|
| 309 |
+
if weight1 is not None:
|
| 310 |
+
y1 = torch.empty_like(out)
|
| 311 |
+
assert y1.stride(-1) == 1
|
| 312 |
+
else:
|
| 313 |
+
y1 = None
|
| 314 |
+
if (
|
| 315 |
+
residual is not None
|
| 316 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
| 317 |
+
or dropout_p > 0.0
|
| 318 |
+
or rowscale is not None
|
| 319 |
+
or x1 is not None
|
| 320 |
+
):
|
| 321 |
+
if residual_out is None:
|
| 322 |
+
residual_out = torch.empty(
|
| 323 |
+
M,
|
| 324 |
+
N,
|
| 325 |
+
device=x.device,
|
| 326 |
+
dtype=residual_dtype if residual_dtype is not None else x.dtype,
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
assert residual_out.shape == x.shape
|
| 330 |
+
assert residual_out.stride(-1) == 1
|
| 331 |
+
else:
|
| 332 |
+
residual_out = None
|
| 333 |
+
mean = (
|
| 334 |
+
torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 335 |
+
if not is_rms_norm
|
| 336 |
+
else None
|
| 337 |
+
)
|
| 338 |
+
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
| 339 |
+
if dropout_p > 0.0:
|
| 340 |
+
seeds = torch.randint(
|
| 341 |
+
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
|
| 342 |
+
)
|
| 343 |
+
else:
|
| 344 |
+
seeds = None
|
| 345 |
+
if return_dropout_mask and dropout_p > 0.0:
|
| 346 |
+
dropout_mask = torch.empty(
|
| 347 |
+
M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool
|
| 348 |
+
)
|
| 349 |
+
else:
|
| 350 |
+
dropout_mask = None
|
| 351 |
+
# Less than 64KB per feature: enqueue fused kernel
|
| 352 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 353 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 354 |
+
if N > BLOCK_N:
|
| 355 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 356 |
+
with torch.cuda.device(x.device.index):
|
| 357 |
+
_layer_norm_fwd_1pass_kernel[(M,)](
|
| 358 |
+
x,
|
| 359 |
+
out,
|
| 360 |
+
weight,
|
| 361 |
+
bias,
|
| 362 |
+
residual,
|
| 363 |
+
x1,
|
| 364 |
+
weight1,
|
| 365 |
+
bias1,
|
| 366 |
+
y1,
|
| 367 |
+
residual_out,
|
| 368 |
+
rowscale,
|
| 369 |
+
seeds,
|
| 370 |
+
dropout_mask,
|
| 371 |
+
mean,
|
| 372 |
+
rstd,
|
| 373 |
+
x.stride(0),
|
| 374 |
+
out.stride(0),
|
| 375 |
+
residual.stride(0) if residual is not None else 0,
|
| 376 |
+
residual_out.stride(0) if residual_out is not None else 0,
|
| 377 |
+
x1.stride(0) if x1 is not None else 0,
|
| 378 |
+
y1.stride(0) if y1 is not None else 0,
|
| 379 |
+
M,
|
| 380 |
+
N,
|
| 381 |
+
eps,
|
| 382 |
+
dropout_p,
|
| 383 |
+
is_rms_norm,
|
| 384 |
+
BLOCK_N,
|
| 385 |
+
residual is not None,
|
| 386 |
+
residual_out is not None,
|
| 387 |
+
bias is not None,
|
| 388 |
+
dropout_p > 0.0,
|
| 389 |
+
dropout_mask is not None,
|
| 390 |
+
rowscale is not None,
|
| 391 |
+
)
|
| 392 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
| 393 |
+
if dropout_mask is not None and x1 is not None:
|
| 394 |
+
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
|
| 395 |
+
else:
|
| 396 |
+
dropout_mask1 = None
|
| 397 |
+
return (
|
| 398 |
+
out,
|
| 399 |
+
y1,
|
| 400 |
+
mean,
|
| 401 |
+
rstd,
|
| 402 |
+
residual_out if residual_out is not None else x,
|
| 403 |
+
seeds,
|
| 404 |
+
dropout_mask,
|
| 405 |
+
dropout_mask1,
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
@triton.autotune(
|
| 410 |
+
configs=[
|
| 411 |
+
triton.Config({}, num_warps=1),
|
| 412 |
+
triton.Config({}, num_warps=2),
|
| 413 |
+
triton.Config({}, num_warps=4),
|
| 414 |
+
triton.Config({}, num_warps=8),
|
| 415 |
+
triton.Config({}, num_warps=16),
|
| 416 |
+
triton.Config({}, num_warps=32),
|
| 417 |
+
],
|
| 418 |
+
key=[
|
| 419 |
+
"N",
|
| 420 |
+
"HAS_DRESIDUAL",
|
| 421 |
+
"STORE_DRESIDUAL",
|
| 422 |
+
"IS_RMS_NORM",
|
| 423 |
+
"HAS_BIAS",
|
| 424 |
+
"HAS_DROPOUT",
|
| 425 |
+
],
|
| 426 |
+
)
|
| 427 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
| 428 |
+
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
| 429 |
+
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
| 430 |
+
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
| 431 |
+
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
| 432 |
+
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
| 433 |
+
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
| 434 |
+
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
| 435 |
+
@triton.jit
|
| 436 |
+
def _layer_norm_bwd_kernel(
|
| 437 |
+
X, # pointer to the input
|
| 438 |
+
W, # pointer to the weights
|
| 439 |
+
B, # pointer to the biases
|
| 440 |
+
Y, # pointer to the output to be recomputed
|
| 441 |
+
DY, # pointer to the output gradient
|
| 442 |
+
DX, # pointer to the input gradient
|
| 443 |
+
DW, # pointer to the partial sum of weights gradient
|
| 444 |
+
DB, # pointer to the partial sum of biases gradient
|
| 445 |
+
DRESIDUAL,
|
| 446 |
+
W1,
|
| 447 |
+
DY1,
|
| 448 |
+
DX1,
|
| 449 |
+
DW1,
|
| 450 |
+
DB1,
|
| 451 |
+
DRESIDUAL_IN,
|
| 452 |
+
ROWSCALE,
|
| 453 |
+
SEEDS,
|
| 454 |
+
Mean, # pointer to the mean
|
| 455 |
+
Rstd, # pointer to the 1/std
|
| 456 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
| 457 |
+
stride_y_row,
|
| 458 |
+
stride_dy_row,
|
| 459 |
+
stride_dx_row,
|
| 460 |
+
stride_dres_row,
|
| 461 |
+
stride_dy1_row,
|
| 462 |
+
stride_dx1_row,
|
| 463 |
+
stride_dres_in_row,
|
| 464 |
+
M, # number of rows in X
|
| 465 |
+
N, # number of columns in X
|
| 466 |
+
eps, # epsilon to avoid division by zero
|
| 467 |
+
dropout_p,
|
| 468 |
+
rows_per_program,
|
| 469 |
+
IS_RMS_NORM: tl.constexpr,
|
| 470 |
+
BLOCK_N: tl.constexpr,
|
| 471 |
+
HAS_DRESIDUAL: tl.constexpr,
|
| 472 |
+
STORE_DRESIDUAL: tl.constexpr,
|
| 473 |
+
HAS_BIAS: tl.constexpr,
|
| 474 |
+
HAS_DROPOUT: tl.constexpr,
|
| 475 |
+
HAS_ROWSCALE: tl.constexpr,
|
| 476 |
+
HAS_DY1: tl.constexpr,
|
| 477 |
+
HAS_DX1: tl.constexpr,
|
| 478 |
+
HAS_B1: tl.constexpr,
|
| 479 |
+
RECOMPUTE_OUTPUT: tl.constexpr,
|
| 480 |
+
):
|
| 481 |
+
# Map the program id to the elements of X, DX, and DY it should compute.
|
| 482 |
+
row_block_id = tl.program_id(0)
|
| 483 |
+
row_start = row_block_id * rows_per_program
|
| 484 |
+
# Do not early exit if row_start >= M, because we need to write DW and DB
|
| 485 |
+
cols = tl.arange(0, BLOCK_N)
|
| 486 |
+
mask = cols < N
|
| 487 |
+
X += row_start * stride_x_row
|
| 488 |
+
if HAS_DRESIDUAL:
|
| 489 |
+
DRESIDUAL += row_start * stride_dres_row
|
| 490 |
+
if STORE_DRESIDUAL:
|
| 491 |
+
DRESIDUAL_IN += row_start * stride_dres_in_row
|
| 492 |
+
DY += row_start * stride_dy_row
|
| 493 |
+
DX += row_start * stride_dx_row
|
| 494 |
+
if HAS_DY1:
|
| 495 |
+
DY1 += row_start * stride_dy1_row
|
| 496 |
+
if HAS_DX1:
|
| 497 |
+
DX1 += row_start * stride_dx1_row
|
| 498 |
+
if RECOMPUTE_OUTPUT:
|
| 499 |
+
Y += row_start * stride_y_row
|
| 500 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
| 501 |
+
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
| 502 |
+
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
| 503 |
+
if HAS_DY1:
|
| 504 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
| 505 |
+
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 506 |
+
if HAS_BIAS:
|
| 507 |
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 508 |
+
if HAS_DY1:
|
| 509 |
+
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 510 |
+
if HAS_B1:
|
| 511 |
+
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
| 512 |
+
row_end = min((row_block_id + 1) * rows_per_program, M)
|
| 513 |
+
for row in range(row_start, row_end):
|
| 514 |
+
# Load data to SRAM
|
| 515 |
+
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
| 516 |
+
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
| 517 |
+
if HAS_DY1:
|
| 518 |
+
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
|
| 519 |
+
if not IS_RMS_NORM:
|
| 520 |
+
mean = tl.load(Mean + row)
|
| 521 |
+
rstd = tl.load(Rstd + row)
|
| 522 |
+
# Compute dx
|
| 523 |
+
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
| 524 |
+
xhat = tl.where(mask, xhat, 0.0)
|
| 525 |
+
if RECOMPUTE_OUTPUT:
|
| 526 |
+
y = xhat * w + b if HAS_BIAS else xhat * w
|
| 527 |
+
tl.store(Y + cols, y, mask=mask)
|
| 528 |
+
wdy = w * dy
|
| 529 |
+
dw += dy * xhat
|
| 530 |
+
if HAS_BIAS:
|
| 531 |
+
db += dy
|
| 532 |
+
if HAS_DY1:
|
| 533 |
+
wdy += w1 * dy1
|
| 534 |
+
dw1 += dy1 * xhat
|
| 535 |
+
if HAS_B1:
|
| 536 |
+
db1 += dy1
|
| 537 |
+
if not IS_RMS_NORM:
|
| 538 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
| 539 |
+
c2 = tl.sum(wdy, axis=0) / N
|
| 540 |
+
dx = (wdy - (xhat * c1 + c2)) * rstd
|
| 541 |
+
else:
|
| 542 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
| 543 |
+
dx = (wdy - xhat * c1) * rstd
|
| 544 |
+
if HAS_DRESIDUAL:
|
| 545 |
+
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
| 546 |
+
dx += dres
|
| 547 |
+
# Write dx
|
| 548 |
+
if STORE_DRESIDUAL:
|
| 549 |
+
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
| 550 |
+
if HAS_DX1:
|
| 551 |
+
if HAS_DROPOUT:
|
| 552 |
+
keep_mask = (
|
| 553 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
| 554 |
+
> dropout_p
|
| 555 |
+
)
|
| 556 |
+
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 557 |
+
else:
|
| 558 |
+
dx1 = dx
|
| 559 |
+
tl.store(DX1 + cols, dx1, mask=mask)
|
| 560 |
+
if HAS_DROPOUT:
|
| 561 |
+
keep_mask = (
|
| 562 |
+
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7)
|
| 563 |
+
> dropout_p
|
| 564 |
+
)
|
| 565 |
+
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
| 566 |
+
if HAS_ROWSCALE:
|
| 567 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
| 568 |
+
dx *= rowscale
|
| 569 |
+
tl.store(DX + cols, dx, mask=mask)
|
| 570 |
+
|
| 571 |
+
X += stride_x_row
|
| 572 |
+
if HAS_DRESIDUAL:
|
| 573 |
+
DRESIDUAL += stride_dres_row
|
| 574 |
+
if STORE_DRESIDUAL:
|
| 575 |
+
DRESIDUAL_IN += stride_dres_in_row
|
| 576 |
+
if RECOMPUTE_OUTPUT:
|
| 577 |
+
Y += stride_y_row
|
| 578 |
+
DY += stride_dy_row
|
| 579 |
+
DX += stride_dx_row
|
| 580 |
+
if HAS_DY1:
|
| 581 |
+
DY1 += stride_dy1_row
|
| 582 |
+
if HAS_DX1:
|
| 583 |
+
DX1 += stride_dx1_row
|
| 584 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
| 585 |
+
if HAS_BIAS:
|
| 586 |
+
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
| 587 |
+
if HAS_DY1:
|
| 588 |
+
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
|
| 589 |
+
if HAS_B1:
|
| 590 |
+
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def _layer_norm_bwd(
|
| 594 |
+
dy,
|
| 595 |
+
x,
|
| 596 |
+
weight,
|
| 597 |
+
bias,
|
| 598 |
+
eps,
|
| 599 |
+
mean,
|
| 600 |
+
rstd,
|
| 601 |
+
dresidual=None,
|
| 602 |
+
dy1=None,
|
| 603 |
+
weight1=None,
|
| 604 |
+
bias1=None,
|
| 605 |
+
seeds=None,
|
| 606 |
+
dropout_p=0.0,
|
| 607 |
+
rowscale=None,
|
| 608 |
+
has_residual=False,
|
| 609 |
+
has_x1=False,
|
| 610 |
+
is_rms_norm=False,
|
| 611 |
+
x_dtype=None,
|
| 612 |
+
recompute_output=False,
|
| 613 |
+
):
|
| 614 |
+
M, N = x.shape
|
| 615 |
+
assert x.stride(-1) == 1
|
| 616 |
+
assert dy.stride(-1) == 1
|
| 617 |
+
assert dy.shape == (M, N)
|
| 618 |
+
if dresidual is not None:
|
| 619 |
+
assert dresidual.stride(-1) == 1
|
| 620 |
+
assert dresidual.shape == (M, N)
|
| 621 |
+
assert weight.shape == (N,)
|
| 622 |
+
assert weight.stride(-1) == 1
|
| 623 |
+
if bias is not None:
|
| 624 |
+
assert bias.stride(-1) == 1
|
| 625 |
+
assert bias.shape == (N,)
|
| 626 |
+
if dy1 is not None:
|
| 627 |
+
assert weight1 is not None
|
| 628 |
+
assert dy1.shape == dy.shape
|
| 629 |
+
assert dy1.stride(-1) == 1
|
| 630 |
+
if weight1 is not None:
|
| 631 |
+
assert weight1.shape == (N,)
|
| 632 |
+
assert weight1.stride(-1) == 1
|
| 633 |
+
if bias1 is not None:
|
| 634 |
+
assert bias1.shape == (N,)
|
| 635 |
+
assert bias1.stride(-1) == 1
|
| 636 |
+
if seeds is not None:
|
| 637 |
+
assert seeds.is_contiguous()
|
| 638 |
+
assert seeds.shape == (M if not has_x1 else M * 2,)
|
| 639 |
+
if rowscale is not None:
|
| 640 |
+
assert rowscale.is_contiguous()
|
| 641 |
+
assert rowscale.shape == (M,)
|
| 642 |
+
# allocate output
|
| 643 |
+
dx = (
|
| 644 |
+
torch.empty_like(x)
|
| 645 |
+
if x_dtype is None
|
| 646 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
| 647 |
+
)
|
| 648 |
+
dresidual_in = (
|
| 649 |
+
torch.empty_like(x)
|
| 650 |
+
if has_residual
|
| 651 |
+
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
|
| 652 |
+
else None
|
| 653 |
+
)
|
| 654 |
+
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
| 655 |
+
y = (
|
| 656 |
+
torch.empty(M, N, dtype=dy.dtype, device=dy.device)
|
| 657 |
+
if recompute_output
|
| 658 |
+
else None
|
| 659 |
+
)
|
| 660 |
+
if recompute_output:
|
| 661 |
+
assert (
|
| 662 |
+
weight1 is None
|
| 663 |
+
), "recompute_output is not supported with parallel LayerNorm"
|
| 664 |
+
|
| 665 |
+
# Less than 64KB per feature: enqueue fused kernel
|
| 666 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 667 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 668 |
+
if N > BLOCK_N:
|
| 669 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
| 670 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
| 671 |
+
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
| 672 |
+
_db = (
|
| 673 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
| 674 |
+
if bias is not None
|
| 675 |
+
else None
|
| 676 |
+
)
|
| 677 |
+
_dw1 = torch.empty_like(_dw) if weight1 is not None else None
|
| 678 |
+
_db1 = torch.empty_like(_db) if bias1 is not None else None
|
| 679 |
+
rows_per_program = math.ceil(M / sm_count)
|
| 680 |
+
grid = (sm_count,)
|
| 681 |
+
with torch.cuda.device(x.device.index):
|
| 682 |
+
_layer_norm_bwd_kernel[grid](
|
| 683 |
+
x,
|
| 684 |
+
weight,
|
| 685 |
+
bias,
|
| 686 |
+
y,
|
| 687 |
+
dy,
|
| 688 |
+
dx,
|
| 689 |
+
_dw,
|
| 690 |
+
_db,
|
| 691 |
+
dresidual,
|
| 692 |
+
weight1,
|
| 693 |
+
dy1,
|
| 694 |
+
dx1,
|
| 695 |
+
_dw1,
|
| 696 |
+
_db1,
|
| 697 |
+
dresidual_in,
|
| 698 |
+
rowscale,
|
| 699 |
+
seeds,
|
| 700 |
+
mean,
|
| 701 |
+
rstd,
|
| 702 |
+
x.stride(0),
|
| 703 |
+
0 if not recompute_output else y.stride(0),
|
| 704 |
+
dy.stride(0),
|
| 705 |
+
dx.stride(0),
|
| 706 |
+
dresidual.stride(0) if dresidual is not None else 0,
|
| 707 |
+
dy1.stride(0) if dy1 is not None else 0,
|
| 708 |
+
dx1.stride(0) if dx1 is not None else 0,
|
| 709 |
+
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
| 710 |
+
M,
|
| 711 |
+
N,
|
| 712 |
+
eps,
|
| 713 |
+
dropout_p,
|
| 714 |
+
rows_per_program,
|
| 715 |
+
is_rms_norm,
|
| 716 |
+
BLOCK_N,
|
| 717 |
+
dresidual is not None,
|
| 718 |
+
dresidual_in is not None,
|
| 719 |
+
bias is not None,
|
| 720 |
+
dropout_p > 0.0,
|
| 721 |
+
)
|
| 722 |
+
dw = _dw.sum(0).to(weight.dtype)
|
| 723 |
+
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
| 724 |
+
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
| 725 |
+
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
| 726 |
+
# Don't need to compute dresidual_in separately in this case
|
| 727 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
| 728 |
+
dresidual_in = dx
|
| 729 |
+
if has_x1 and dropout_p == 0.0:
|
| 730 |
+
dx1 = dx
|
| 731 |
+
return (
|
| 732 |
+
(dx, dw, db, dresidual_in, dx1, dw1, db1)
|
| 733 |
+
if not recompute_output
|
| 734 |
+
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
class LayerNormFn(torch.autograd.Function):
|
| 739 |
+
@staticmethod
|
| 740 |
+
def forward(
|
| 741 |
+
ctx,
|
| 742 |
+
x,
|
| 743 |
+
weight,
|
| 744 |
+
bias,
|
| 745 |
+
residual=None,
|
| 746 |
+
x1=None,
|
| 747 |
+
weight1=None,
|
| 748 |
+
bias1=None,
|
| 749 |
+
eps=1e-6,
|
| 750 |
+
dropout_p=0.0,
|
| 751 |
+
rowscale=None,
|
| 752 |
+
prenorm=False,
|
| 753 |
+
residual_in_fp32=False,
|
| 754 |
+
is_rms_norm=False,
|
| 755 |
+
return_dropout_mask=False,
|
| 756 |
+
out=None,
|
| 757 |
+
residual_out=None,
|
| 758 |
+
):
|
| 759 |
+
x_shape_og = x.shape
|
| 760 |
+
# reshape input data into 2D tensor
|
| 761 |
+
x = x.reshape(-1, x.shape[-1])
|
| 762 |
+
if x.stride(-1) != 1:
|
| 763 |
+
x = x.contiguous()
|
| 764 |
+
if residual is not None:
|
| 765 |
+
assert residual.shape == x_shape_og
|
| 766 |
+
residual = residual.reshape(-1, residual.shape[-1])
|
| 767 |
+
if residual.stride(-1) != 1:
|
| 768 |
+
residual = residual.contiguous()
|
| 769 |
+
if x1 is not None:
|
| 770 |
+
assert x1.shape == x_shape_og
|
| 771 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
| 772 |
+
x1 = x1.reshape(-1, x1.shape[-1])
|
| 773 |
+
if x1.stride(-1) != 1:
|
| 774 |
+
x1 = x1.contiguous()
|
| 775 |
+
weight = weight.contiguous()
|
| 776 |
+
if bias is not None:
|
| 777 |
+
bias = bias.contiguous()
|
| 778 |
+
if weight1 is not None:
|
| 779 |
+
weight1 = weight1.contiguous()
|
| 780 |
+
if bias1 is not None:
|
| 781 |
+
bias1 = bias1.contiguous()
|
| 782 |
+
if rowscale is not None:
|
| 783 |
+
rowscale = rowscale.reshape(-1).contiguous()
|
| 784 |
+
residual_dtype = (
|
| 785 |
+
residual.dtype
|
| 786 |
+
if residual is not None
|
| 787 |
+
else (torch.float32 if residual_in_fp32 else None)
|
| 788 |
+
)
|
| 789 |
+
if out is not None:
|
| 790 |
+
out = out.reshape(-1, out.shape[-1])
|
| 791 |
+
if residual_out is not None:
|
| 792 |
+
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
| 793 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = (
|
| 794 |
+
_layer_norm_fwd(
|
| 795 |
+
x,
|
| 796 |
+
weight,
|
| 797 |
+
bias,
|
| 798 |
+
eps,
|
| 799 |
+
residual,
|
| 800 |
+
x1,
|
| 801 |
+
weight1,
|
| 802 |
+
bias1,
|
| 803 |
+
dropout_p=dropout_p,
|
| 804 |
+
rowscale=rowscale,
|
| 805 |
+
residual_dtype=residual_dtype,
|
| 806 |
+
is_rms_norm=is_rms_norm,
|
| 807 |
+
return_dropout_mask=return_dropout_mask,
|
| 808 |
+
out=out,
|
| 809 |
+
residual_out=residual_out,
|
| 810 |
+
)
|
| 811 |
+
)
|
| 812 |
+
ctx.save_for_backward(
|
| 813 |
+
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
| 814 |
+
)
|
| 815 |
+
ctx.x_shape_og = x_shape_og
|
| 816 |
+
ctx.eps = eps
|
| 817 |
+
ctx.dropout_p = dropout_p
|
| 818 |
+
ctx.is_rms_norm = is_rms_norm
|
| 819 |
+
ctx.has_residual = residual is not None
|
| 820 |
+
ctx.has_x1 = x1 is not None
|
| 821 |
+
ctx.prenorm = prenorm
|
| 822 |
+
ctx.x_dtype = x.dtype
|
| 823 |
+
y = y.reshape(x_shape_og)
|
| 824 |
+
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
| 825 |
+
residual_out = (
|
| 826 |
+
residual_out.reshape(x_shape_og) if residual_out is not None else None
|
| 827 |
+
)
|
| 828 |
+
dropout_mask = (
|
| 829 |
+
dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
| 830 |
+
)
|
| 831 |
+
dropout_mask1 = (
|
| 832 |
+
dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
| 833 |
+
)
|
| 834 |
+
if not return_dropout_mask:
|
| 835 |
+
if weight1 is None:
|
| 836 |
+
return y if not prenorm else (y, residual_out)
|
| 837 |
+
else:
|
| 838 |
+
return (y, y1) if not prenorm else (y, y1, residual_out)
|
| 839 |
+
else:
|
| 840 |
+
if weight1 is None:
|
| 841 |
+
return (
|
| 842 |
+
(y, dropout_mask, dropout_mask1)
|
| 843 |
+
if not prenorm
|
| 844 |
+
else (y, residual_out, dropout_mask, dropout_mask1)
|
| 845 |
+
)
|
| 846 |
+
else:
|
| 847 |
+
return (
|
| 848 |
+
(y, y1, dropout_mask, dropout_mask1)
|
| 849 |
+
if not prenorm
|
| 850 |
+
else (y, y1, residual_out, dropout_mask, dropout_mask1)
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
@staticmethod
|
| 854 |
+
def backward(ctx, dy, *args):
|
| 855 |
+
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
| 856 |
+
dy = dy.reshape(-1, dy.shape[-1])
|
| 857 |
+
if dy.stride(-1) != 1:
|
| 858 |
+
dy = dy.contiguous()
|
| 859 |
+
assert dy.shape == x.shape
|
| 860 |
+
if weight1 is not None:
|
| 861 |
+
dy1, args = args[0], args[1:]
|
| 862 |
+
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
| 863 |
+
if dy1.stride(-1) != 1:
|
| 864 |
+
dy1 = dy1.contiguous()
|
| 865 |
+
assert dy1.shape == x.shape
|
| 866 |
+
else:
|
| 867 |
+
dy1 = None
|
| 868 |
+
if ctx.prenorm:
|
| 869 |
+
dresidual = args[0]
|
| 870 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
| 871 |
+
if dresidual.stride(-1) != 1:
|
| 872 |
+
dresidual = dresidual.contiguous()
|
| 873 |
+
assert dresidual.shape == x.shape
|
| 874 |
+
else:
|
| 875 |
+
dresidual = None
|
| 876 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
|
| 877 |
+
dy,
|
| 878 |
+
x,
|
| 879 |
+
weight,
|
| 880 |
+
bias,
|
| 881 |
+
ctx.eps,
|
| 882 |
+
mean,
|
| 883 |
+
rstd,
|
| 884 |
+
dresidual,
|
| 885 |
+
dy1,
|
| 886 |
+
weight1,
|
| 887 |
+
bias1,
|
| 888 |
+
seeds,
|
| 889 |
+
ctx.dropout_p,
|
| 890 |
+
rowscale,
|
| 891 |
+
ctx.has_residual,
|
| 892 |
+
ctx.has_x1,
|
| 893 |
+
ctx.is_rms_norm,
|
| 894 |
+
x_dtype=ctx.x_dtype,
|
| 895 |
+
)
|
| 896 |
+
return (
|
| 897 |
+
dx.reshape(ctx.x_shape_og),
|
| 898 |
+
dw,
|
| 899 |
+
db,
|
| 900 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
| 901 |
+
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
|
| 902 |
+
dw1,
|
| 903 |
+
db1,
|
| 904 |
+
None,
|
| 905 |
+
None,
|
| 906 |
+
None,
|
| 907 |
+
None,
|
| 908 |
+
None,
|
| 909 |
+
None,
|
| 910 |
+
None,
|
| 911 |
+
None,
|
| 912 |
+
None,
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
def layer_norm_fn(
|
| 917 |
+
x,
|
| 918 |
+
weight,
|
| 919 |
+
bias,
|
| 920 |
+
residual=None,
|
| 921 |
+
x1=None,
|
| 922 |
+
weight1=None,
|
| 923 |
+
bias1=None,
|
| 924 |
+
eps=1e-6,
|
| 925 |
+
dropout_p=0.0,
|
| 926 |
+
rowscale=None,
|
| 927 |
+
prenorm=False,
|
| 928 |
+
residual_in_fp32=False,
|
| 929 |
+
is_rms_norm=False,
|
| 930 |
+
return_dropout_mask=False,
|
| 931 |
+
out=None,
|
| 932 |
+
residual_out=None,
|
| 933 |
+
):
|
| 934 |
+
return LayerNormFn.apply(
|
| 935 |
+
x,
|
| 936 |
+
weight,
|
| 937 |
+
bias,
|
| 938 |
+
residual,
|
| 939 |
+
x1,
|
| 940 |
+
weight1,
|
| 941 |
+
bias1,
|
| 942 |
+
eps,
|
| 943 |
+
dropout_p,
|
| 944 |
+
rowscale,
|
| 945 |
+
prenorm,
|
| 946 |
+
residual_in_fp32,
|
| 947 |
+
is_rms_norm,
|
| 948 |
+
return_dropout_mask,
|
| 949 |
+
out,
|
| 950 |
+
residual_out,
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
def rms_norm_fn(
|
| 955 |
+
x,
|
| 956 |
+
weight,
|
| 957 |
+
bias,
|
| 958 |
+
residual=None,
|
| 959 |
+
x1=None,
|
| 960 |
+
weight1=None,
|
| 961 |
+
bias1=None,
|
| 962 |
+
eps=1e-6,
|
| 963 |
+
dropout_p=0.0,
|
| 964 |
+
rowscale=None,
|
| 965 |
+
prenorm=False,
|
| 966 |
+
residual_in_fp32=False,
|
| 967 |
+
return_dropout_mask=False,
|
| 968 |
+
out=None,
|
| 969 |
+
residual_out=None,
|
| 970 |
+
):
|
| 971 |
+
return LayerNormFn.apply(
|
| 972 |
+
x,
|
| 973 |
+
weight,
|
| 974 |
+
bias,
|
| 975 |
+
residual,
|
| 976 |
+
x1,
|
| 977 |
+
weight1,
|
| 978 |
+
bias1,
|
| 979 |
+
eps,
|
| 980 |
+
dropout_p,
|
| 981 |
+
rowscale,
|
| 982 |
+
prenorm,
|
| 983 |
+
residual_in_fp32,
|
| 984 |
+
True,
|
| 985 |
+
return_dropout_mask,
|
| 986 |
+
out,
|
| 987 |
+
residual_out,
|
| 988 |
+
)
|