[INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file tokenizer.model from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer.model [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file tokenizer.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer.json [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file added_tokens.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/added_tokens.json [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file special_tokens_map.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/special_tokens_map.json [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file tokenizer_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer_config.json [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2023 >> loading file chat_template.jinja from cache at None [INFO|2025-05-27 22:39:19] tokenization_utils_base.py:2299 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [WARNING|2025-05-27 22:39:20] logging.py:328 >> Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. [INFO|2025-05-27 22:39:20] processing_utils.py:930 >> loading configuration file processor_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/processor_config.json [INFO|2025-05-27 22:39:20] image_processing_base.py:380 >> loading configuration file preprocessor_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/preprocessor_config.json [WARNING|2025-05-27 22:39:20] logging.py:328 >> Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. [INFO|2025-05-27 22:39:20] image_processing_base.py:433 >> Image processor CLIPImageProcessor { "crop_size": { "height": 336, "width": 336 }, "do_center_crop": true, "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "CLIPImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "processor_class": "LlavaProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "shortest_edge": 336 } } [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file tokenizer.model from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer.model [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file tokenizer.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer.json [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file added_tokens.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/added_tokens.json [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file special_tokens_map.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/special_tokens_map.json [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file tokenizer_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/tokenizer_config.json [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2023 >> loading file chat_template.jinja from cache at None [INFO|2025-05-27 22:39:21] tokenization_utils_base.py:2299 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|2025-05-27 22:39:22] processing_utils.py:930 >> loading configuration file processor_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/processor_config.json [INFO|2025-05-27 22:39:22] processing_utils.py:990 >> Processor LlavaProcessor: - image_processor: CLIPImageProcessor { "crop_size": { "height": 336, "width": 336 }, "do_center_crop": true, "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "CLIPImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "processor_class": "LlavaProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "shortest_edge": 336 } } - tokenizer: LlamaTokenizerFast(name_or_path='llava-hf/llava-1.5-7b-hf', vocab_size=32000, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '', 'pad_token': '', 'image_token': ''}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 0: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 1: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 2: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 32000: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 32001: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), } ) { "image_token": "", "num_additional_image_tokens": 1, "patch_size": 14, "processor_class": "LlavaProcessor", "vision_feature_select_strategy": "default" } [INFO|2025-05-27 22:39:22] logging.py:143 >> Loading dataset /home/tsinghuaair/mawz/xxe_metchee/finetune-llms/llava-1.5-7b-hf-sticker-labels/kfold_output/fold_4/stickers_label_train.json... [INFO|2025-05-27 22:39:26] configuration_utils.py:698 >> loading configuration file config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/config.json [INFO|2025-05-27 22:39:26] configuration_utils.py:770 >> Model config LlavaConfig { "architectures": [ "LlavaForConditionalGeneration" ], "ignore_index": -100, "image_seq_length": 576, "image_token_index": 32000, "model_type": "llava", "multimodal_projector_bias": true, "pad_token_id": 32001, "projector_hidden_act": "gelu", "text_config": { "_name_or_path": "lmsys/vicuna-7b-v1.5", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "head_dim": 128, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 11008, "max_position_embeddings": 4096, "mlp_bias": false, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "torch_dtype": "float16", "use_cache": true, "vocab_size": 32064 }, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.52.1", "vision_config": { "attention_dropout": 0.0, "hidden_act": "quick_gelu", "hidden_size": 1024, "image_size": 336, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "model_type": "clip_vision_model", "num_attention_heads": 16, "num_channels": 3, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768, "vocab_size": 32000 }, "vision_feature_layer": -2, "vision_feature_select_strategy": "default", "vocab_size": 32064 } [INFO|2025-05-27 22:39:26] logging.py:143 >> KV cache is disabled during training. [INFO|2025-05-27 22:39:26] modeling_utils.py:1149 >> loading weights file model.safetensors from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/model.safetensors.index.json [INFO|2025-05-27 22:39:26] modeling_utils.py:2239 >> Instantiating LlavaForConditionalGeneration model under default dtype torch.bfloat16. [INFO|2025-05-27 22:39:26] configuration_utils.py:1135 >> Generate config GenerationConfig { "pad_token_id": 32001, "use_cache": false } [INFO|2025-05-27 22:39:27] modeling_utils.py:2239 >> Instantiating CLIPVisionModel model under default dtype torch.bfloat16. [INFO|2025-05-27 22:39:27] modeling_utils.py:2239 >> Instantiating LlamaModel model under default dtype torch.bfloat16. [INFO|2025-05-27 22:39:30] modeling_utils.py:5170 >> All model checkpoint weights were used when initializing LlavaForConditionalGeneration. [INFO|2025-05-27 22:39:30] modeling_utils.py:5178 >> All the weights of LlavaForConditionalGeneration were initialized from the model checkpoint at llava-hf/llava-1.5-7b-hf. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaForConditionalGeneration for predictions without further training. [INFO|2025-05-27 22:39:30] configuration_utils.py:1090 >> loading configuration file generation_config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/generation_config.json [INFO|2025-05-27 22:39:30] configuration_utils.py:1135 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 32001 } [INFO|2025-05-27 22:39:31] logging.py:143 >> Gradient checkpointing enabled. [INFO|2025-05-27 22:39:31] logging.py:143 >> Using torch SDPA for faster training and inference. [INFO|2025-05-27 22:39:31] logging.py:143 >> Upcasting trainable params to float32. [INFO|2025-05-27 22:39:31] logging.py:143 >> Fine-tuning method: LoRA [INFO|2025-05-27 22:39:31] logging.py:143 >> Found linear modules: k_proj,v_proj,q_proj,o_proj,gate_proj,up_proj,down_proj [INFO|2025-05-27 22:39:31] logging.py:143 >> Set vision model not trainable: ['vision_tower']. [INFO|2025-05-27 22:39:31] logging.py:143 >> Set multi model projector not trainable: multi_modal_projector. [INFO|2025-05-27 22:39:31] logging.py:143 >> trainable params: 19,988,480 || all params: 7,083,415,552 || trainable%: 0.2822 [INFO|2025-05-27 22:39:31] trainer.py:756 >> Using auto half precision backend [INFO|2025-05-27 22:39:32] trainer.py:2409 >> ***** Running training ***** [INFO|2025-05-27 22:39:32] trainer.py:2410 >> Num examples = 890 [INFO|2025-05-27 22:39:32] trainer.py:2411 >> Num Epochs = 4 [INFO|2025-05-27 22:39:32] trainer.py:2412 >> Instantaneous batch size per device = 2 [INFO|2025-05-27 22:39:32] trainer.py:2415 >> Total train batch size (w. parallel, distributed & accumulation) = 32 [INFO|2025-05-27 22:39:32] trainer.py:2416 >> Gradient Accumulation steps = 8 [INFO|2025-05-27 22:39:32] trainer.py:2417 >> Total optimization steps = 112 [INFO|2025-05-27 22:39:32] trainer.py:2418 >> Number of trainable parameters = 19,988,480 [WARNING|2025-05-27 22:39:34] logging.py:328 >> `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. [WARNING|2025-05-27 22:39:34] logging.py:328 >> `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. [INFO|2025-05-27 22:39:59] logging.py:143 >> {'loss': 3.5214, 'learning_rate': 4.9843e-05, 'epoch': 0.18, 'throughput': 4196.48} [INFO|2025-05-27 22:40:25] logging.py:143 >> {'loss': 3.3636, 'learning_rate': 4.9208e-05, 'epoch': 0.36, 'throughput': 4256.30} [INFO|2025-05-27 22:40:51] logging.py:143 >> {'loss': 3.0641, 'learning_rate': 4.8097e-05, 'epoch': 0.54, 'throughput': 4270.16} [INFO|2025-05-27 22:41:17] logging.py:143 >> {'loss': 2.9922, 'learning_rate': 4.6533e-05, 'epoch': 0.72, 'throughput': 4270.54} [INFO|2025-05-27 22:41:44] logging.py:143 >> {'loss': 3.0359, 'learning_rate': 4.4546e-05, 'epoch': 0.90, 'throughput': 4269.56} [INFO|2025-05-27 22:42:09] logging.py:143 >> {'loss': 2.8250, 'learning_rate': 4.2175e-05, 'epoch': 1.07, 'throughput': 4268.14} [INFO|2025-05-27 22:42:35] logging.py:143 >> {'loss': 2.8427, 'learning_rate': 3.9467e-05, 'epoch': 1.25, 'throughput': 4266.21} [INFO|2025-05-27 22:43:02] logging.py:143 >> {'loss': 2.7976, 'learning_rate': 3.6475e-05, 'epoch': 1.43, 'throughput': 4263.24} [INFO|2025-05-27 22:43:28] logging.py:143 >> {'loss': 2.6764, 'learning_rate': 3.3257e-05, 'epoch': 1.61, 'throughput': 4261.43} [INFO|2025-05-27 22:43:54] logging.py:143 >> {'loss': 2.7217, 'learning_rate': 2.9877e-05, 'epoch': 1.79, 'throughput': 4260.88} [INFO|2025-05-27 22:44:21] logging.py:143 >> {'loss': 2.7066, 'learning_rate': 2.6402e-05, 'epoch': 1.97, 'throughput': 4259.29} [INFO|2025-05-27 22:44:46] logging.py:143 >> {'loss': 2.6038, 'learning_rate': 2.2899e-05, 'epoch': 2.14, 'throughput': 4258.92} [INFO|2025-05-27 22:45:13] logging.py:143 >> {'loss': 2.5954, 'learning_rate': 1.9437e-05, 'epoch': 2.32, 'throughput': 4258.25} [INFO|2025-05-27 22:45:39] logging.py:143 >> {'loss': 2.6679, 'learning_rate': 1.6084e-05, 'epoch': 2.50, 'throughput': 4256.92} [INFO|2025-05-27 22:46:05] logging.py:143 >> {'loss': 2.5975, 'learning_rate': 1.2907e-05, 'epoch': 2.68, 'throughput': 4256.50} [INFO|2025-05-27 22:46:32] logging.py:143 >> {'loss': 2.6389, 'learning_rate': 9.9671e-06, 'epoch': 2.86, 'throughput': 4256.21} [INFO|2025-05-27 22:46:57] logging.py:143 >> {'loss': 2.4908, 'learning_rate': 7.3223e-06, 'epoch': 3.04, 'throughput': 4255.50} [INFO|2025-05-27 22:47:24] logging.py:143 >> {'loss': 2.6384, 'learning_rate': 5.0247e-06, 'epoch': 3.22, 'throughput': 4255.70} [INFO|2025-05-27 22:47:50] logging.py:143 >> {'loss': 2.5131, 'learning_rate': 3.1194e-06, 'epoch': 3.39, 'throughput': 4255.25} [INFO|2025-05-27 22:48:16] logging.py:143 >> {'loss': 2.5565, 'learning_rate': 1.6438e-06, 'epoch': 3.57, 'throughput': 4255.05} [INFO|2025-05-27 22:48:16] trainer.py:3993 >> Saving model checkpoint to saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100 [INFO|2025-05-27 22:48:17] configuration_utils.py:698 >> loading configuration file config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/config.json [INFO|2025-05-27 22:48:17] configuration_utils.py:770 >> Model config LlavaConfig { "architectures": [ "LlavaForConditionalGeneration" ], "ignore_index": -100, "image_seq_length": 576, "image_token_index": 32000, "model_type": "llava", "multimodal_projector_bias": true, "pad_token_id": 32001, "projector_hidden_act": "gelu", "text_config": { "_name_or_path": "lmsys/vicuna-7b-v1.5", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "head_dim": 128, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 11008, "max_position_embeddings": 4096, "mlp_bias": false, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "torch_dtype": "float16", "use_cache": true, "vocab_size": 32064 }, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.52.1", "vision_config": { "attention_dropout": 0.0, "hidden_act": "quick_gelu", "hidden_size": 1024, "image_size": 336, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "model_type": "clip_vision_model", "num_attention_heads": 16, "num_channels": 3, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768, "vocab_size": 32000 }, "vision_feature_layer": -2, "vision_feature_select_strategy": "default", "vocab_size": 32064 } [INFO|2025-05-27 22:48:17] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/chat_template.jinja [INFO|2025-05-27 22:48:17] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/tokenizer_config.json [INFO|2025-05-27 22:48:17] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/special_tokens_map.json [INFO|2025-05-27 22:48:18] image_processing_base.py:260 >> Image processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/preprocessor_config.json [INFO|2025-05-27 22:48:18] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/chat_template.jinja [INFO|2025-05-27 22:48:18] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/tokenizer_config.json [INFO|2025-05-27 22:48:18] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/special_tokens_map.json [INFO|2025-05-27 22:48:18] processing_utils.py:674 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/chat_template.jinja [INFO|2025-05-27 22:48:18] processing_utils.py:709 >> processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-100/processor_config.json [INFO|2025-05-27 22:48:45] logging.py:143 >> {'loss': 2.5378, 'learning_rate': 6.2680e-07, 'epoch': 3.75, 'throughput': 4240.62} [INFO|2025-05-27 22:49:11] logging.py:143 >> {'loss': 2.5846, 'learning_rate': 8.8463e-08, 'epoch': 3.93, 'throughput': 4240.92} [INFO|2025-05-27 22:49:21] trainer.py:3993 >> Saving model checkpoint to saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112 [INFO|2025-05-27 22:49:22] configuration_utils.py:698 >> loading configuration file config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/config.json [INFO|2025-05-27 22:49:22] configuration_utils.py:770 >> Model config LlavaConfig { "architectures": [ "LlavaForConditionalGeneration" ], "ignore_index": -100, "image_seq_length": 576, "image_token_index": 32000, "model_type": "llava", "multimodal_projector_bias": true, "pad_token_id": 32001, "projector_hidden_act": "gelu", "text_config": { "_name_or_path": "lmsys/vicuna-7b-v1.5", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "head_dim": 128, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 11008, "max_position_embeddings": 4096, "mlp_bias": false, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "torch_dtype": "float16", "use_cache": true, "vocab_size": 32064 }, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.52.1", "vision_config": { "attention_dropout": 0.0, "hidden_act": "quick_gelu", "hidden_size": 1024, "image_size": 336, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "model_type": "clip_vision_model", "num_attention_heads": 16, "num_channels": 3, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768, "vocab_size": 32000 }, "vision_feature_layer": -2, "vision_feature_select_strategy": "default", "vocab_size": 32064 } [INFO|2025-05-27 22:49:22] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/chat_template.jinja [INFO|2025-05-27 22:49:22] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/tokenizer_config.json [INFO|2025-05-27 22:49:22] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/special_tokens_map.json [INFO|2025-05-27 22:49:23] image_processing_base.py:260 >> Image processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/preprocessor_config.json [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/chat_template.jinja [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/tokenizer_config.json [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/special_tokens_map.json [INFO|2025-05-27 22:49:23] processing_utils.py:674 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/chat_template.jinja [INFO|2025-05-27 22:49:23] processing_utils.py:709 >> processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/checkpoint-112/processor_config.json [INFO|2025-05-27 22:49:23] trainer.py:2676 >> Training completed. Do not forget to share your model on huggingface.co/models =) [INFO|2025-05-27 22:49:23] image_processing_base.py:260 >> Image processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/preprocessor_config.json [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/chat_template.jinja [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/tokenizer_config.json [INFO|2025-05-27 22:49:23] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/special_tokens_map.json [INFO|2025-05-27 22:49:23] processing_utils.py:674 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/chat_template.jinja [INFO|2025-05-27 22:49:23] processing_utils.py:709 >> processor saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/processor_config.json [INFO|2025-05-27 22:49:23] trainer.py:3993 >> Saving model checkpoint to saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs [INFO|2025-05-27 22:49:24] configuration_utils.py:698 >> loading configuration file config.json from cache at /home/tsinghuaair/.cache/huggingface/hub/models--llava-hf--llava-1.5-7b-hf/snapshots/6ceb2ed33cb8f107a781c431fe2e61574da69369/config.json [INFO|2025-05-27 22:49:24] configuration_utils.py:770 >> Model config LlavaConfig { "architectures": [ "LlavaForConditionalGeneration" ], "ignore_index": -100, "image_seq_length": 576, "image_token_index": 32000, "model_type": "llava", "multimodal_projector_bias": true, "pad_token_id": 32001, "projector_hidden_act": "gelu", "text_config": { "_name_or_path": "lmsys/vicuna-7b-v1.5", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "head_dim": 128, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 11008, "max_position_embeddings": 4096, "mlp_bias": false, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "torch_dtype": "float16", "use_cache": true, "vocab_size": 32064 }, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.52.1", "vision_config": { "attention_dropout": 0.0, "hidden_act": "quick_gelu", "hidden_size": 1024, "image_size": 336, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "model_type": "clip_vision_model", "num_attention_heads": 16, "num_channels": 3, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768, "vocab_size": 32000 }, "vision_feature_layer": -2, "vision_feature_select_strategy": "default", "vocab_size": 32064 } [INFO|2025-05-27 22:49:24] tokenization_utils_base.py:2356 >> chat template saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/chat_template.jinja [INFO|2025-05-27 22:49:24] tokenization_utils_base.py:2525 >> tokenizer config file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/tokenizer_config.json [INFO|2025-05-27 22:49:24] tokenization_utils_base.py:2534 >> Special tokens file saved in saves/LLaVA-1.5-7B-Chat/lora/train_k_folds_4_4_epochs/special_tokens_map.json [WARNING|2025-05-27 22:49:25] logging.py:148 >> No metric eval_loss to plot. [WARNING|2025-05-27 22:49:25] logging.py:148 >> No metric eval_accuracy to plot. [INFO|2025-05-27 22:49:25] modelcard.py:450 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}