--- license: afl-3.0 language: - en base_model: - google/flan-t5-xl pipeline_tag: text-classification tags: - personality --- ## Model Details * **Model Type:** PersonalityClassifier is a fine-tuned model from `google/flan-t5-xl` using annotation data for personality classification. * **Model Date:** PersonalityClassifier was trained in Jan 2024. * **Paper or resources for more information:** [https://arxiv.org/abs/2504.06868](https://arxiv.org/abs/2504.06868) * **Train data:** [https://huggingface.co/datasets/mirlab/personality_120000](https://huggingface.co/datasets/mirlab/personality_120000) ## Requirements * `torch==2.1.0` * `transformers==4.29.0` ## How to use the model ```python import torch from transformers import T5ForConditionalGeneration, AutoTokenizer # Set device to CUDA if available, otherwise use CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and tokenizer model_name = "mirlab/PersonalityClassifier" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) # Define model inference function def modelGenerate(input_text, lm, tokenizer): # Tokenize input text and move to device input_ids = tokenizer(input_text, truncation=True, padding=True, return_tensors='pt')['input_ids'].to(device) # Generate text using the model model_output = lm.generate(input_ids) # Decode generated tokens into text model_answer = tokenizer.batch_decode(model_output, skip_special_tokens=True) return model_answer # Example input text # Format: "[Valence] Statement: [Your Statement]. Trait: [Target Trait]" # Target Trait is among ["Openness", "Conscientiousness", "Extraversion", "Agreeableness", "Neuroticism", "Machiavellianism", "Narcissism", "Psychopathy"]. # Valence indicates positive (+) or negative (-) alignment with the trait. input_texts = "[Valence] Statement: I am outgoing. Trait: Extraversion" # Generate output using the model and print output_texts = modelGenerate(input_texts, model, tokenizer) print(output_texts)