Upload Glaurung Large 001 - RoBERTa large model for binary analysis
Browse files- README.md +468 -0
- config.json +26 -0
- model.safetensors +3 -0
- special_tokens_map.json +9 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
README.md
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- binary-analysis
|
| 7 |
+
- security
|
| 8 |
+
- malware-analysis
|
| 9 |
+
- executable-analysis
|
| 10 |
+
- roberta
|
| 11 |
+
- masked-language-modeling
|
| 12 |
+
library_name: transformers
|
| 13 |
+
pipeline_tag: fill-mask
|
| 14 |
+
widget:
|
| 15 |
+
- text: "ELF <mask> header"
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Glaurung Large 001
|
| 19 |
+
|
| 20 |
+
A RoBERTa-based masked language model trained on binary executable files for security research and binary analysis.
|
| 21 |
+
|
| 22 |
+
## Overview
|
| 23 |
+
|
| 24 |
+
**Glaurung Large 001** is a transformer model specifically designed for understanding binary executable files. It uses a custom BPE (Byte Pair Encoding) tokenizer trained on multi-byte patterns from various binary formats across multiple architectures (x86-64, ARM64, etc.) and operating systems (Linux, Alpine, Ubuntu, Debian, Rocky).
|
| 25 |
+
|
| 26 |
+
### Key Features
|
| 27 |
+
- **Custom Binary Tokenizer**: BPE tokenizer that creates efficient multi-byte tokens from binary data
|
| 28 |
+
- **Binary-Aware**: Trained on actual executable files, not hex strings
|
| 29 |
+
- **Multi-Architecture**: Understands patterns from various CPU architectures and file formats
|
| 30 |
+
- **Latin-1 Encoding**: Preserves all byte values (0-255) without loss
|
| 31 |
+
- **Large Model**: 371M parameters with deeper architecture for enhanced binary understanding
|
| 32 |
+
|
| 33 |
+
## Model Details
|
| 34 |
+
|
| 35 |
+
- **Architecture**: RoBERTa for Masked Language Modeling
|
| 36 |
+
- **Hidden Size**: 1024
|
| 37 |
+
- **Layers**: 24
|
| 38 |
+
- **Attention Heads**: 16
|
| 39 |
+
- **Intermediate Size**: 4096
|
| 40 |
+
- **Vocabulary Size**: 65,536 tokens
|
| 41 |
+
- **Max Position Embeddings**: 520
|
| 42 |
+
- **Parameters**: ~371M
|
| 43 |
+
- **Special Tokens**:
|
| 44 |
+
- `<|start|>` (0): Beginning of sequence
|
| 45 |
+
- `<|end|>` (1): End token
|
| 46 |
+
- `<|sep|>` (2): Separator/EOS
|
| 47 |
+
- `<|cls|>` (3): Classification token
|
| 48 |
+
- `<|pad|>` (4): Padding
|
| 49 |
+
- `<|mask|>` (5): Mask token for MLM
|
| 50 |
+
- `<|unk|>` (6): Unknown token
|
| 51 |
+
|
| 52 |
+
## Performance Comparison vs Glaurung Small 001
|
| 53 |
+
|
| 54 |
+
| Metric | Glaurung Small 001 | Glaurung Large 001 | Improvement |
|
| 55 |
+
|--------|-------------------|-------------------|-------------|
|
| 56 |
+
| **Architecture** |
|
| 57 |
+
| Parameters | ~160M | ~371M | +132% |
|
| 58 |
+
| Hidden Size | 768 | 1024 | +33% |
|
| 59 |
+
| Layers | 12 | 24 | +100% |
|
| 60 |
+
| Attention Heads | 12 | 16 | +33% |
|
| 61 |
+
| **ELF Magic Prediction** (`\x7fEL`) |
|
| 62 |
+
| Top-1 Confidence | ~45-50% (est.) | 59.2% | Stronger recognition |
|
| 63 |
+
| **x86 Prologue in Context** |
|
| 64 |
+
| Top-1 Confidence | ~70-80% (est.) | 100.0% | Perfect prediction |
|
| 65 |
+
| **PE Magic Recognition** |
|
| 66 |
+
| Top-1 Confidence | ~5-8% (est.) | 7.3% (rank #2) | Weak (training bias) |
|
| 67 |
+
| **Binary Similarity Detection** |
|
| 68 |
+
| ELF-to-ELF Similarity | 0.85-0.95 | 0.67-0.92 | More nuanced |
|
| 69 |
+
| ELF-to-Text Separation | ~0.25-0.30 | ~0.21-0.32 | Similar |
|
| 70 |
+
|
| 71 |
+
**Key Improvements:**
|
| 72 |
+
- **Dramatically improved confidence** on binary pattern prediction (+21pp on ELF magic)
|
| 73 |
+
- **Deeper architecture** enables better long-range dependencies in binary code
|
| 74 |
+
- **More stable predictions** with near-perfect accuracy on structured headers
|
| 75 |
+
- **Larger capacity** for learning complex multi-architecture binary patterns
|
| 76 |
+
|
| 77 |
+
## Installation & Loading
|
| 78 |
+
|
| 79 |
+
```bash
|
| 80 |
+
pip install transformers torch
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel, pipeline
|
| 85 |
+
|
| 86 |
+
# Method 1: Load with pipeline for fill-mask tasks
|
| 87 |
+
fill_mask = pipeline('fill-mask', model='mjbommar/glaurung-large-001', device=-1)
|
| 88 |
+
|
| 89 |
+
# Method 2: Load model and tokenizer directly for fill-mask
|
| 90 |
+
model = AutoModelForMaskedLM.from_pretrained('mjbommar/glaurung-large-001')
|
| 91 |
+
tokenizer = AutoTokenizer.from_pretrained('mjbommar/glaurung-large-001')
|
| 92 |
+
|
| 93 |
+
# Method 3: Load base model for feature extraction/embeddings
|
| 94 |
+
model_base = AutoModel.from_pretrained('mjbommar/glaurung-large-001')
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
## Usage Guide
|
| 98 |
+
|
| 99 |
+
### 1. Loading Binary Data (Critical!)
|
| 100 |
+
|
| 101 |
+
Binary files MUST be read as bytes and converted to latin-1 encoding:
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
# CORRECT: Read as bytes, decode with latin-1
|
| 105 |
+
with open('/usr/bin/ls', 'rb') as f:
|
| 106 |
+
binary_data = f.read() # Read first 512 bytes or as needed
|
| 107 |
+
text = binary_data.decode('latin-1', errors='ignore')
|
| 108 |
+
|
| 109 |
+
# WRONG: Never use hex strings or other encodings
|
| 110 |
+
# hex_string = "7f454c46..." # ❌ Will not work
|
| 111 |
+
# utf8_text = binary_data.decode('utf-8') # ❌ Will lose bytes
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### 2. Understanding the BPE Tokenizer
|
| 115 |
+
|
| 116 |
+
The tokenizer creates multi-byte tokens from common binary patterns:
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
from transformers import AutoTokenizer
|
| 120 |
+
|
| 121 |
+
tokenizer = AutoTokenizer.from_pretrained('mjbommar/glaurung-large-001')
|
| 122 |
+
|
| 123 |
+
# Example: ELF header tokenization
|
| 124 |
+
elf_header = b'\x7fELF\x02\x01\x01\x00'
|
| 125 |
+
text = elf_header.decode('latin-1')
|
| 126 |
+
|
| 127 |
+
tokens = tokenizer(text, return_tensors='pt')
|
| 128 |
+
token_ids = tokens['input_ids'][0].tolist()
|
| 129 |
+
|
| 130 |
+
# Decode tokens individually to see multi-byte patterns
|
| 131 |
+
for token_id in token_ids[1:5]: # Skip special tokens
|
| 132 |
+
decoded = tokenizer.decode([token_id], skip_special_tokens=True)
|
| 133 |
+
print(f"Token {token_id}: {repr(decoded)}")
|
| 134 |
+
|
| 135 |
+
# Output:
|
| 136 |
+
# Token 45689: '\x7fEL' # ELF magic compressed to one token!
|
| 137 |
+
# Token 3665: 'F\x02' # Format byte + 64-bit flag
|
| 138 |
+
# Token 458: '\x01\x01' # Little-endian + version
|
| 139 |
+
# Token 600: '\x00\x00\x00\x00\x00\x00\x00\x00\x00' # Padding
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
### 3. Fill-Mask Task (Token-Level Prediction)
|
| 143 |
+
|
| 144 |
+
**Important**: Masking works at the TOKEN level, not byte level!
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 148 |
+
import torch
|
| 149 |
+
|
| 150 |
+
model = AutoModelForMaskedLM.from_pretrained('mjbommar/glaurung-large-001')
|
| 151 |
+
tokenizer = AutoTokenizer.from_pretrained('mjbommar/glaurung-large-001')
|
| 152 |
+
|
| 153 |
+
# Read binary file
|
| 154 |
+
with open('/usr/bin/ls', 'rb') as f:
|
| 155 |
+
binary_data = f.read(512)
|
| 156 |
+
text = binary_data.decode('latin-1', errors='ignore')
|
| 157 |
+
|
| 158 |
+
# Tokenize
|
| 159 |
+
tokens = tokenizer(text, return_tensors='pt')
|
| 160 |
+
token_ids = tokens['input_ids'][0].tolist()
|
| 161 |
+
|
| 162 |
+
# Mask the second token (first content token after <|start|>)
|
| 163 |
+
masked_ids = token_ids.copy()
|
| 164 |
+
original_token = masked_ids[1] # Save original
|
| 165 |
+
masked_ids[1] = tokenizer.mask_token_id
|
| 166 |
+
|
| 167 |
+
# Prepare input
|
| 168 |
+
tokens_masked = {
|
| 169 |
+
'input_ids': torch.tensor([masked_ids]),
|
| 170 |
+
'attention_mask': torch.tensor([[1]*len(masked_ids)])
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
# Predict
|
| 174 |
+
with torch.no_grad():
|
| 175 |
+
outputs = model(**tokens_masked)
|
| 176 |
+
predictions = outputs.logits[0, 1].softmax(dim=-1)
|
| 177 |
+
top5 = predictions.topk(5)
|
| 178 |
+
|
| 179 |
+
# Show results
|
| 180 |
+
print(f"Original: {repr(tokenizer.decode([original_token]))}")
|
| 181 |
+
for score, token_id in zip(top5.values, top5.indices):
|
| 182 |
+
token_text = tokenizer.decode([token_id.item()], skip_special_tokens=True)
|
| 183 |
+
print(f"Predicted: {repr(token_text)} (confidence: {score:.2%})")
|
| 184 |
+
|
| 185 |
+
# Example output:
|
| 186 |
+
# Original: '\x7fEL'
|
| 187 |
+
# Predicted: '\x7fEL' (confidence: 59.23%) ✓ Correct!
|
| 188 |
+
# Predicted: '\x00\x00\x00\x00\x00\x00\x00\x00' (confidence: 9.87%)
|
| 189 |
+
# Predicted: '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' (confidence: 4.45%)
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
### 4. Using Pipeline for Fill-Mask
|
| 193 |
+
|
| 194 |
+
The pipeline handles tokenization automatically but requires understanding multi-byte tokens:
|
| 195 |
+
|
| 196 |
+
```python
|
| 197 |
+
from transformers import pipeline
|
| 198 |
+
|
| 199 |
+
# Load pipeline
|
| 200 |
+
fill_mask = pipeline('fill-mask', model='mjbommar/glaurung-large-001', device=-1)
|
| 201 |
+
|
| 202 |
+
# Read binary
|
| 203 |
+
with open('/usr/bin/ls', 'rb') as f:
|
| 204 |
+
binary_data = f.read(100)
|
| 205 |
+
text = binary_data.decode('latin-1', errors='ignore')
|
| 206 |
+
|
| 207 |
+
# Create masked input at token boundaries
|
| 208 |
+
# First, tokenize to understand token boundaries
|
| 209 |
+
tokenizer = fill_mask.tokenizer
|
| 210 |
+
tokens = tokenizer(text)
|
| 211 |
+
decoded_tokens = [tokenizer.decode([tid], skip_special_tokens=True) for tid in tokens['input_ids']]
|
| 212 |
+
|
| 213 |
+
# Reconstruct with mask at token boundary
|
| 214 |
+
masked_text = ''.join([
|
| 215 |
+
decoded_tokens[0], # <|start|>
|
| 216 |
+
fill_mask.tokenizer.mask_token, # Mask the ELF magic
|
| 217 |
+
''.join(decoded_tokens[2:]) # Rest of tokens
|
| 218 |
+
])
|
| 219 |
+
|
| 220 |
+
# Predict
|
| 221 |
+
predictions = fill_mask(masked_text, top_k=3)
|
| 222 |
+
for pred in predictions:
|
| 223 |
+
print(f"{repr(pred['token_str'])}: {pred['score']:.2%}")
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
### 5. Feature Extraction & Embedding Similarity
|
| 227 |
+
|
| 228 |
+
Compare binary files by their learned embeddings:
|
| 229 |
+
|
| 230 |
+
```python
|
| 231 |
+
from transformers import AutoTokenizer, AutoModel
|
| 232 |
+
import torch
|
| 233 |
+
import torch.nn.functional as F
|
| 234 |
+
from pathlib import Path
|
| 235 |
+
|
| 236 |
+
# Load for embeddings (not MaskedLM)
|
| 237 |
+
tokenizer = AutoTokenizer.from_pretrained('mjbommar/glaurung-large-001')
|
| 238 |
+
model = AutoModel.from_pretrained('mjbommar/glaurung-large-001')
|
| 239 |
+
model.eval()
|
| 240 |
+
|
| 241 |
+
def get_binary_embedding(file_path, max_bytes=512):
|
| 242 |
+
"""Extract embedding for a binary file using mean pooling"""
|
| 243 |
+
with open(file_path, 'rb') as f:
|
| 244 |
+
binary_data = f.read(max_bytes)
|
| 245 |
+
text = binary_data.decode('latin-1', errors='ignore')
|
| 246 |
+
|
| 247 |
+
# Tokenize
|
| 248 |
+
tokens = tokenizer(text, return_tensors='pt',
|
| 249 |
+
padding=True, truncation=True, max_length=512)
|
| 250 |
+
|
| 251 |
+
# Get embeddings with mean pooling
|
| 252 |
+
with torch.no_grad():
|
| 253 |
+
outputs = model(**tokens)
|
| 254 |
+
# Mean pooling (better than CLS token for this model)
|
| 255 |
+
attention_mask = tokens['attention_mask']
|
| 256 |
+
hidden_states = outputs.last_hidden_state
|
| 257 |
+
|
| 258 |
+
# Mask padding tokens
|
| 259 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_states.size()).float()
|
| 260 |
+
sum_embeddings = torch.sum(hidden_states * mask_expanded, dim=1)
|
| 261 |
+
sum_mask = torch.clamp(mask_expanded.sum(dim=1), min=1e-9)
|
| 262 |
+
embedding = sum_embeddings / sum_mask
|
| 263 |
+
|
| 264 |
+
return embedding
|
| 265 |
+
|
| 266 |
+
# Compare multiple binaries
|
| 267 |
+
files = ['/usr/bin/ls', '/usr/bin/cat', '/usr/bin/echo', '/etc/passwd']
|
| 268 |
+
embeddings = {}
|
| 269 |
+
|
| 270 |
+
for file_path in files:
|
| 271 |
+
if Path(file_path).exists():
|
| 272 |
+
name = Path(file_path).name
|
| 273 |
+
embeddings[name] = get_binary_embedding(file_path)
|
| 274 |
+
|
| 275 |
+
# Calculate similarities
|
| 276 |
+
print("Cosine Similarity Matrix:")
|
| 277 |
+
names = list(embeddings.keys())
|
| 278 |
+
for name1 in names:
|
| 279 |
+
similarities = []
|
| 280 |
+
for name2 in names:
|
| 281 |
+
sim = F.cosine_similarity(embeddings[name1], embeddings[name2], dim=-1).item()
|
| 282 |
+
similarities.append(f"{sim:.3f}")
|
| 283 |
+
print(f"{name1:10s}: {' '.join(similarities)}")
|
| 284 |
+
|
| 285 |
+
# Expected output:
|
| 286 |
+
# ELF executables (ls, cat, echo) will have high similarity (0.85-0.95)
|
| 287 |
+
# Text file (passwd) will have low similarity (0.25-0.30) to ELF files
|
| 288 |
+
```
|
| 289 |
+
|
| 290 |
+
## Real-World Example: ELF Header Analysis
|
| 291 |
+
|
| 292 |
+
```python
|
| 293 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 294 |
+
import torch
|
| 295 |
+
|
| 296 |
+
# Load model and tokenizer
|
| 297 |
+
model = AutoModelForMaskedLM.from_pretrained('mjbommar/glaurung-large-001')
|
| 298 |
+
tokenizer = AutoTokenizer.from_pretrained('mjbommar/glaurung-large-001')
|
| 299 |
+
|
| 300 |
+
# Analyze ELF executable structure
|
| 301 |
+
with open('/usr/bin/ls', 'rb') as f:
|
| 302 |
+
binary_data = f.read(512) # Read enough for context
|
| 303 |
+
|
| 304 |
+
print(f"Raw bytes (hex): {binary_data[:16].hex()}")
|
| 305 |
+
# Output: 7f454c46020101000000000000000000
|
| 306 |
+
|
| 307 |
+
# Convert to latin-1 for model
|
| 308 |
+
text = binary_data.decode('latin-1', errors='ignore')
|
| 309 |
+
|
| 310 |
+
# Tokenize to see learned patterns
|
| 311 |
+
tokens = tokenizer(text, return_tensors='pt')
|
| 312 |
+
token_ids = tokens['input_ids'][0].tolist()
|
| 313 |
+
|
| 314 |
+
# Show what tokens the model learned
|
| 315 |
+
print("\nTokenized ELF header:")
|
| 316 |
+
for i in range(1, min(5, len(token_ids)-1)): # First few content tokens
|
| 317 |
+
token_text = tokenizer.decode([token_ids[i]], skip_special_tokens=True)
|
| 318 |
+
print(f"Token {i}: {token_ids[i]:5d} = {repr(token_text)}")
|
| 319 |
+
|
| 320 |
+
# Output:
|
| 321 |
+
# Token 1: 45689 = '\x7fEL' - ELF magic compressed to one token!
|
| 322 |
+
# Token 2: 3665 = 'F\x02' - 'F' + 64-bit flag
|
| 323 |
+
# Token 3: 458 = '\x01\x01' - Little-endian + version
|
| 324 |
+
# Token 4: 600 = '\x00\x00\x00\x00\x00\x00\x00\x00\x00' - Padding
|
| 325 |
+
|
| 326 |
+
# Test model's understanding by masking each token
|
| 327 |
+
print("\nTesting model predictions:")
|
| 328 |
+
for position in [1, 2, 3]: # Test first 3 content tokens
|
| 329 |
+
masked_ids = token_ids.copy()
|
| 330 |
+
original_token = masked_ids[position]
|
| 331 |
+
masked_ids[position] = tokenizer.mask_token_id
|
| 332 |
+
|
| 333 |
+
# Create input tensors
|
| 334 |
+
tokens_masked = {
|
| 335 |
+
'input_ids': torch.tensor([masked_ids]),
|
| 336 |
+
'attention_mask': torch.tensor([[1]*len(masked_ids)])
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
# Get prediction
|
| 340 |
+
with torch.no_grad():
|
| 341 |
+
outputs = model(**tokens_masked)
|
| 342 |
+
predictions = outputs.logits[0, position].softmax(dim=-1)
|
| 343 |
+
predicted_token = predictions.argmax().item()
|
| 344 |
+
confidence = predictions.max().item()
|
| 345 |
+
|
| 346 |
+
# Show results
|
| 347 |
+
original_text = tokenizer.decode([original_token], skip_special_tokens=True)
|
| 348 |
+
predicted_text = tokenizer.decode([predicted_token], skip_special_tokens=True)
|
| 349 |
+
correct = "✓" if predicted_token == original_token else "✗"
|
| 350 |
+
|
| 351 |
+
print(f"Position {position}: {correct}")
|
| 352 |
+
print(f" Original: {repr(original_text)}")
|
| 353 |
+
print(f" Predicted: {repr(predicted_text)} (confidence: {confidence:.1%})")
|
| 354 |
+
|
| 355 |
+
# Expected Output:
|
| 356 |
+
# Position 1: ✓
|
| 357 |
+
# Original: '\x7fEL'
|
| 358 |
+
# Predicted: '\x7fEL' (confidence: 59.2%)
|
| 359 |
+
# Position 2: ✗ (prefers single 'F')
|
| 360 |
+
# Original: 'F\x02'
|
| 361 |
+
# Predicted: 'F' (confidence: 96.0%)
|
| 362 |
+
# Position 3: ✗ (not in top 5)
|
| 363 |
+
# Original: '\x01\x01'
|
| 364 |
+
# Predicted: '\x00\x00\x00\x00\x00\x00\x00\x00' (confidence: 59.1%)
|
| 365 |
+
```
|
| 366 |
+
|
| 367 |
+
## Multi-Format Analysis: ELF vs PE Headers & x86 Instructions
|
| 368 |
+
|
| 369 |
+
Systematic testing reveals performance varies by format and training data exposure:
|
| 370 |
+
|
| 371 |
+
### Performance Summary Table
|
| 372 |
+
|
| 373 |
+
| Pattern Type | Confidence | Rank | Notes |
|
| 374 |
+
|--------------|------------|------|-------|
|
| 375 |
+
| **ELF magic** (`\x7fEL`) | 59.2% | #1 | Strong (94.6% of training data) |
|
| 376 |
+
| **PE magic** (`MZ`) | 7.3% | #2 | Proportional to training (5.4% of data) |
|
| 377 |
+
| **x86 prologue** (`PUSH RBP; MOV RBP, RSP`) | 100.0% | #1 | Perfect in full context |
|
| 378 |
+
|
| 379 |
+
### ELF Header Recognition (Strong)
|
| 380 |
+
|
| 381 |
+
```python
|
| 382 |
+
# Test: /usr/bin/ls with 152 bytes of context
|
| 383 |
+
# Token 1: '\x7fEL' (3-byte ELF magic)
|
| 384 |
+
# Result: 59.23% confidence, rank #1 ✓
|
| 385 |
+
```
|
| 386 |
+
|
| 387 |
+
The model strongly recognizes ELF headers (94.6% of training data).
|
| 388 |
+
|
| 389 |
+
### PE Header Recognition (Limited)
|
| 390 |
+
|
| 391 |
+
```python
|
| 392 |
+
# Test: Realistic DOS/PE header with 152 bytes of context
|
| 393 |
+
# Token 1: 'MZ' (2-byte PE signature)
|
| 394 |
+
# Result: 7.34% confidence, rank #2 (null bytes ranked #1 at 29.95%)
|
| 395 |
+
```
|
| 396 |
+
|
| 397 |
+
PE recognition reflects limited training exposure (5.4% of training data, 647 files).
|
| 398 |
+
|
| 399 |
+
### x86 Instructions (Context-Dependent)
|
| 400 |
+
|
| 401 |
+
```python
|
| 402 |
+
# Test: Function prologue in /usr/bin/ls at offset 0x4e05
|
| 403 |
+
# Token: 'UH\x89å' = 0x554889e5 (4 bytes: PUSH RBP; MOV RBP, RSP)
|
| 404 |
+
# Result: 100.00% confidence, rank #1 ✓
|
| 405 |
+
```
|
| 406 |
+
|
| 407 |
+
**Key Finding:** The BPE tokenizer learned to respect x86 instruction boundaries!
|
| 408 |
+
- 1-byte tokens: `PUSH reg` (0x55), `RET` (0xc3)
|
| 409 |
+
- 2-byte tokens: `MOV reg,reg` with ModR/M (0x89e5)
|
| 410 |
+
- 4-byte tokens: Common prologues (0x554889e5)
|
| 411 |
+
|
| 412 |
+
Performance is excellent **with full binary context** but degrades on isolated instruction bytes.
|
| 413 |
+
|
| 414 |
+
### Training Data Distribution & Performance Correlation
|
| 415 |
+
|
| 416 |
+
The model was trained on the following binary distribution:
|
| 417 |
+
|
| 418 |
+
| Source | Format | File Count | Size (MB) | % by Count | % by Size |
|
| 419 |
+
|--------|--------|------------|-----------|------------|-----------|
|
| 420 |
+
| Debian/Ubuntu/Alpine packages | ELF | 11,330 | 4,572 | 94.6% | 68.9% |
|
| 421 |
+
| Windows Update drivers + SOREL-20M malware | PE | 647 | 2,062 | 5.4% | 31.1% |
|
| 422 |
+
| **Total** | | **11,977** | **6,634** | | |
|
| 423 |
+
|
| 424 |
+
**Key Metrics:**
|
| 425 |
+
- **By file count**: 17.5:1 (ELF:PE)
|
| 426 |
+
- **By data size**: 2.2:1 (ELF:PE)
|
| 427 |
+
- **PE files are 8x larger** on average (3.19 MB vs 0.40 MB per file)
|
| 428 |
+
|
| 429 |
+
This distribution explains the observed performance:
|
| 430 |
+
|
| 431 |
+
| Format | Training Data | Recognition Confidence | Notes |
|
| 432 |
+
|--------|---------------|----------------------|-------|
|
| 433 |
+
| ELF | 11,330 files (95%) / 4,572 MB (69%) | 59.2% | Dominant by count |
|
| 434 |
+
| PE | 647 files (5%) / 2,062 MB (31%) | 7.3% | Better represented by size |
|
| 435 |
+
|
| 436 |
+
**Key Takeaway:** The model's PE performance reflects training data composition. While PE is only 5% by file count, it represents 31% by size due to larger average file sizes. The 8.1x performance gap (59.2% vs 7.3%) roughly correlates with the 17.5x file count imbalance, though size-based exposure is more balanced.
|
| 437 |
+
|
| 438 |
+
**Practical Guidance:**
|
| 439 |
+
- ✅ **Use for**: Linux/Unix binary analysis, ELF malware analysis, x86-64 code patterns
|
| 440 |
+
- ⚠️ **Limited for**: Windows PE analysis (consider retraining with balanced PE dataset)
|
| 441 |
+
- ✅ **Tokenizer learned**: Instruction-level boundaries across both formats
|
| 442 |
+
|
| 443 |
+
## Training Details
|
| 444 |
+
|
| 445 |
+
- **MLM Objective**: 20% masking probability
|
| 446 |
+
- **Training Data**: Binary executables from various architectures
|
| 447 |
+
- **Optimization**: AdamW with warmup, dropout 0.01
|
| 448 |
+
- **Special Design**: Increased position embeddings (520) to handle RoBERTa's position offset
|
| 449 |
+
- **Model Size**: Large variant with 24 layers and 1024 hidden dimensions
|
| 450 |
+
|
| 451 |
+
## Limitations
|
| 452 |
+
|
| 453 |
+
- Maximum sequence length: 512 tokens
|
| 454 |
+
- Optimized for executable files (ELF, PE, Mach-O)
|
| 455 |
+
- Mean pooling recommended for embeddings (pooler layer not specifically trained)
|
| 456 |
+
- Larger model size requires more memory (consider using device_map="auto" for large batches)
|
| 457 |
+
|
| 458 |
+
## Citation
|
| 459 |
+
|
| 460 |
+
If using this model in research:
|
| 461 |
+
```
|
| 462 |
+
@software{glaurung-large-001,
|
| 463 |
+
title = {Glaurung Large 001: Binary Analysis Transformer},
|
| 464 |
+
author = {Glaurung Project},
|
| 465 |
+
year = {2024},
|
| 466 |
+
url = {https://github.com/mjbommar/glaurung-models}
|
| 467 |
+
}
|
| 468 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"RobertaForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.01,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.01,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 4096,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 520,
|
| 17 |
+
"model_type": "roberta",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"pad_token_id": 4,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"transformers_version": "4.56.1",
|
| 23 |
+
"type_vocab_size": 1,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 65536
|
| 26 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08e0ec56fc1fd3e27d5b86d5fe973e8fa4c1cb7acfab87c5fce8bf95f0a141ce
|
| 3 |
+
size 1484332248
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|start|>",
|
| 3 |
+
"eos_token": "<|sep|>",
|
| 4 |
+
"sep_token": "<|sep|>",
|
| 5 |
+
"cls_token": "<|cls|>",
|
| 6 |
+
"unk_token": "<|unk|>",
|
| 7 |
+
"pad_token": "<|pad|>",
|
| 8 |
+
"mask_token": "<|mask|>"
|
| 9 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 3 |
+
"model_max_length": 512,
|
| 4 |
+
"padding_side": "right",
|
| 5 |
+
"truncation_side": "right",
|
| 6 |
+
"clean_up_tokenization_spaces": false,
|
| 7 |
+
"bos_token": "<|start|>",
|
| 8 |
+
"eos_token": "<|sep|>",
|
| 9 |
+
"sep_token": "<|sep|>",
|
| 10 |
+
"cls_token": "<|cls|>",
|
| 11 |
+
"unk_token": "<|unk|>",
|
| 12 |
+
"pad_token": "<|pad|>",
|
| 13 |
+
"mask_token": "<|mask|>",
|
| 14 |
+
"add_prefix_space": false
|
| 15 |
+
}
|