File size: 40,793 Bytes
919416f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
import math
from collections.abc import Callable
from typing import Any, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import transformers
from einops import rearrange
from packaging import version
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (BaseModelOutputWithPast,
                                           CausalLMOutputWithPast)
from transformers.modeling_utils import (ALL_ATTENTION_FUNCTIONS,
                                         PreTrainedModel)
from transformers.processing_utils import Unpack
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (TransformersKwargs, auto_docstring,
                                can_return_tuple, logging)
from transformers.utils.generic import OutputRecorder, check_model_inputs

try:
    from fla.layers.utils import get_unpad_data, index_first_axis, pad_input
    from fla.modules import FusedRMSNormGated, ShortConvolution
    from fla.ops.kda import chunk_kda, fused_recurrent_kda
    from fla.ops.kda.gate import fused_kda_gate
except ImportError:
    raise ImportError("Plese run `pip install -U fla-core`")

from .configuration_kimi import KimiLinearConfig

assert version.parse(transformers.__version__) >= version.parse("4.56.0"), \
    "Please upgrade transformers to >= 4.56.0"

logger = logging.get_logger(__name__)


class KimiDynamicCache:
    """
    Dynamic cache for Kimi model.
    Inspired by Qwen3-Next
    """
    is_compileable = False

    def __init__(self, config: KimiLinearConfig):
        super().__init__()
        self.config = config

        if config.linear_attn_config is not None:
            self.layer_types = []
            for i in range(config.num_hidden_layers):
                if config.is_kda_layer(i):
                    self.layer_types.append("linear_attention")
                else:
                    self.layer_types.append("full_attention")
        else:
            self.layer_types = ["full_attention"] * config.num_hidden_layers

        self.transformer_layers = [
            i for i in range(config.num_hidden_layers) if self.layer_types[i] == "full_attention"
        ]

        linear_layers = [i for i in range(
            config.num_hidden_layers) if self.layer_types[i] == "linear_attention"]
        self.last_linear_layer = linear_layers[-1] if linear_layers else -1

        self.conv_states = [None for _ in range(config.num_hidden_layers)]
        self.recurrent_states = [None for _ in range(config.num_hidden_layers)]
        self.key_cache = [None for _ in range(config.num_hidden_layers)]
        self.value_cache = [None for _ in range(config.num_hidden_layers)]

    def __len__(self):
        return len(self.layer_types)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[dict[str, Any]] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if self.key_cache[layer_idx] is None:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            self.key_cache[layer_idx] = torch.cat(
                [self.key_cache[layer_idx], key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat(
                [self.value_cache[layer_idx], value_states], dim=2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            if self.key_cache[layer_idx] is not None:
                device = self.key_cache[layer_idx].device
                beam_idx = beam_idx.to(device)
                self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(
                    0, beam_idx)
                self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(
                    0, beam_idx)

            if self.conv_states[layer_idx] is not None:
                device = self.conv_states[layer_idx][0].device
                beam_idx = beam_idx.to(device)
                q_conv, k_conv, v_conv = self.conv_states[layer_idx]
                self.conv_states[layer_idx] = (
                    q_conv.index_select(0, beam_idx),
                    k_conv.index_select(0, beam_idx),
                    v_conv.index_select(0, beam_idx)
                )
                self.recurrent_states[layer_idx] = self.recurrent_states[layer_idx].index_select(
                    0, beam_idx)

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # take any layer that contains cache and not empty tensor
        layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
        if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx] is None:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
        """
        Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
        the given layer at `layer_idx`.
        The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
        """
        kv_offset = 0
        query_length = cache_position.shape[0]
        past_seen_tokens = self.get_seq_length(layer_idx)
        kv_length = query_length + past_seen_tokens
        return kv_length, kv_offset

    @property
    def has_previous_state(self):
        """We have a previous state if the last linear (conv) layer was already updated."""
        if self.last_linear_layer == -1:
            return False
        return self.conv_states[self.last_linear_layer] is not None


class KimiRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        KimiRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * \
            torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


ALL_LAYERNORM_LAYERS.append(KimiRMSNorm)


class KimiBlockSparseMLP(nn.Module):
    def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
        super().__init__()
        self.config = config
        self.ffn_dim = config.intermediate_size if intermediate_size is None else intermediate_size
        self.hidden_dim = config.hidden_size if hidden_size is None else hidden_size

        self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)   # gate
        self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)   # down
        self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)   # up

        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        current_hidden_states = self.act_fn(
            self.w1(hidden_states)) * self.w3(hidden_states)
        current_hidden_states = self.w2(current_hidden_states)
        return current_hidden_states


class KimiMLP(nn.Module):
    def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
        self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
        self.gate_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(
            self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(
            self.gate_proj(x)) * self.up_proj(x))
        return down_proj


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(
        attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(
        attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class KimiMLAAttention(nn.Module):
    """
    Multi-Latent Attention adapted from deepseek-v3
    """

    def __init__(self, config: KimiLinearConfig, layer_idx: int):
        nn.Module.__init__(self)
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        self.rope_theta = config.rope_theta
        self.attention_dropout = getattr(config, "attention_dropout", 0.0)

        try:
            self.q_lora_rank = config.q_lora_rank
            self.qk_rope_head_dim = config.qk_rope_head_dim
            self.kv_lora_rank = config.kv_lora_rank
            self.v_head_dim = config.v_head_dim
            self.qk_nope_head_dim = config.qk_nope_head_dim
            self.q_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
            self.use_nope = config.mla_use_nope
            self.scaling = self.q_head_dim ** (-0.5)
        except Exception as e:
            raise ValueError(
                f"Kimi MLA config is not found or not properly formatted: {e}")

        assert self.q_lora_rank is None
        self.q_proj = nn.Linear(
            self.hidden_size, self.num_heads * self.q_head_dim, bias=False,
        )
        self.kv_a_proj_with_mqa = nn.Linear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
        )
        self.kv_a_layernorm = KimiRMSNorm(self.kv_lora_rank)
        self.kv_b_proj = nn.Linear(
            self.kv_lora_rank,
            self.num_heads
            * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
            bias=False,
        )
        self.o_proj = nn.Linear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
        )
        self.is_causal = True
        assert self.use_nope

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        batch_size, seq_length = hidden_states.shape[:-1]
        query_shape = (batch_size, seq_length, -1, self.q_head_dim)
        key_shape = (batch_size, seq_length, -1,
                     self.qk_nope_head_dim + self.v_head_dim)

        q_states = self.q_proj(hidden_states)
        q_states = q_states.view(query_shape).transpose(1, 2)
        q_pass, q_rot = torch.split(
            q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
        k_pass, k_rot = torch.split(
            compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)

        k_pass = self.kv_b_proj(self.kv_a_layernorm(
            k_pass)).view(key_shape).transpose(1, 2)
        k_pass, value_states = torch.split(
            k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)

        k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
        k_rot = k_rot.expand(*k_pass.shape[:-1], -1)

        query_states = torch.cat((q_pass, q_rot), dim=-1)
        key_states = torch.cat((k_pass, k_rot), dim=-1)

        if past_key_values is not None:
            key_states, value_states = past_key_values.update(
                key_states, value_states, self.layer_idx)

        if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
            value_states = F.pad(
                value_states, [0, self.q_head_dim - self.v_head_dim])

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, _ = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
            attn_output = attn_output[:, :, :, : self.v_head_dim]

        attn_output = attn_output.reshape(
            batch_size, seq_length, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output


class KimiDeltaAttention(nn.Module):
    def __init__(self, config: KimiLinearConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.mode = "chunk"

        self.hidden_size = config.hidden_size
        self.conv_size = config.linear_attn_config["short_conv_kernel_size"]
        self.head_dim = config.linear_attn_config["head_dim"]
        self.num_heads = config.linear_attn_config["num_heads"]
        self.head_k_dim = self.head_dim
        self.num_k_heads = self.num_heads

        self.layer_idx = layer_idx

        assert self.mode in [
            'chunk', 'fused_recurrent'], f"Not suppoerted mode `{self.mode}`."

        projection_k_size = self.head_k_dim * self.num_k_heads
        projection_size = self.head_dim * self.num_heads

        self.q_proj = nn.Linear(
            self.hidden_size, projection_k_size, bias=False)
        self.k_proj = nn.Linear(
            self.hidden_size, projection_k_size, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, projection_size, bias=False)

        self.q_conv1d = ShortConvolution(
            hidden_size=projection_k_size,
            kernel_size=self.conv_size,
            activation='silu',
        )
        self.k_conv1d = ShortConvolution(
            hidden_size=projection_k_size,
            kernel_size=self.conv_size,
            activation='silu'
        )
        self.v_conv1d = ShortConvolution(
            hidden_size=projection_size,
            kernel_size=self.conv_size,
            activation='silu'
        )

        self.A_log = torch.nn.Parameter(torch.log(torch.empty(
            self.num_heads, dtype=torch.float32).uniform_(1, 16)).view(1, 1, -1, 1))

        self.f_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
        self.f_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)

        self.dt_bias = nn.Parameter(
            torch.empty(projection_size, dtype=torch.float32))

        self.b_proj = nn.Linear(self.hidden_size, self.num_heads, bias=False)

        self.g_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
        self.g_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)

        self.o_norm = FusedRMSNormGated(
            self.head_dim, eps=config.rms_norm_eps, activation='sigmoid')
        self.o_proj = nn.Linear(projection_size, self.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        cache_params: Optional[KimiDynamicCache] = None,
        **kwargs: Unpack[dict]
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            if attention_mask.dim() != 2:
                attention_mask = kwargs.get("padding_mask", None)

            if attention_mask is not None and attention_mask.dim() != 2:
                raise ValueError(
                    "attention_mask must be a 0-1 matrix of shape [batch_size, seq_len] "
                    "(0 = padding). 3D masks are not supported here."
                )
        use_cache = cache_params is not None
        batch_size, q_len, _ = hidden_states.shape
        mode = 'fused_recurrent' if q_len <= 64 else self.mode
        if self.training:
            assert mode == 'chunk', "Only chunk mode is supported in training."

        cu_seqlens = kwargs.get('cu_seqlens', None)
        indices = None
        if attention_mask is not None:
            indices, cu_seqlens, _ = get_unpad_data(attention_mask[:, -q_len:])
            hidden_states = index_first_axis(
                rearrange(hidden_states, "b s ... -> (b s) ..."), indices).unsqueeze(0)

        conv_state_q, conv_state_k, conv_state_v = None, None, None
        recurrent_state = None
        if cache_params is not None:
            if cache_params.conv_states[self.layer_idx] is not None:
                conv_state_q, conv_state_k, conv_state_v = cache_params.conv_states[
                    self.layer_idx]
            recurrent_state = cache_params.recurrent_states[self.layer_idx]
        q, conv_state_q = self.q_conv1d(
            x=self.q_proj(hidden_states),
            cache=conv_state_q,
            output_final_state=use_cache,
            cu_seqlens=cu_seqlens
        )
        k, conv_state_k = self.k_conv1d(
            x=self.k_proj(hidden_states),
            cache=conv_state_k,
            output_final_state=use_cache,
            cu_seqlens=cu_seqlens
        )
        v, conv_state_v = self.v_conv1d(
            x=self.v_proj(hidden_states),
            cache=conv_state_v,
            output_final_state=use_cache,
            cu_seqlens=cu_seqlens
        )
        g = self.f_b_proj(self.f_a_proj(hidden_states))
        g = fused_kda_gate(g, self.A_log, self.head_dim, g_bias=self.dt_bias)
        beta = self.b_proj(hidden_states).float().sigmoid()

        q, k = map(lambda x: rearrange(
            x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
        v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)

        if mode == 'chunk':
            o, recurrent_state = chunk_kda(
                q=q,
                k=k,
                v=v,
                g=g,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=True,
                use_qk_l2norm_in_kernel=True,
                cu_seqlens=cu_seqlens,
            )
        else:
            o, recurrent_state = fused_recurrent_kda(
                q=q,
                k=k,
                v=v,
                g=g,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=True,
                use_qk_l2norm_in_kernel=True,
                cu_seqlens=cu_seqlens,
            )
        if cache_params is not None:
            cache_params.recurrent_states[self.layer_idx] = recurrent_state
            cache_params.conv_states[self.layer_idx] = (
                conv_state_q, conv_state_k, conv_state_v)

        g = self.g_b_proj(self.g_a_proj(hidden_states))
        g = rearrange(g, '... (h d) -> ... h d', d=self.head_dim)
        o = self.o_norm(o, g)

        o = rearrange(o, 'b t h d -> b t (h d)')
        o = self.o_proj(o)
        if attention_mask is not None:
            o = pad_input(o.squeeze(0), indices, batch_size, q_len)

        return o


class KimiMoEGate(nn.Module):
    """
    MoEGate adapted from Deepseek-V3.
    Parameter correspondences:
        num_experts -> n_routed_experts
        num_experts_per_token -> num_experts_per_tok
        num_expert_group -> n_group
        moe_router_activation_func -> scoring_func
    """

    def __init__(self, config: KimiLinearConfig):
        super().__init__()
        self.config = config
        self.top_k = config.num_experts_per_token
        self.num_experts = config.num_experts
        self.routed_scaling_factor = config.routed_scaling_factor
        self.moe_router_activation_func = config.moe_router_activation_func
        self.num_expert_group = getattr(config, "num_expert_group", 1)
        self.topk_group = getattr(config, "topk_group", 1)

        # topk selection algorithm
        self.moe_renormalize = config.moe_renormalize
        self.gating_dim = config.hidden_size
        self.weight = nn.Parameter(
            torch.empty((self.num_experts, self.gating_dim))
        )

        self.e_score_correction_bias = nn.Parameter(
            torch.empty((self.num_experts))
        )
        self.reset_parameters()

    def reset_parameters(self) -> None:
        import torch.nn.init as init

        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, hidden_states):
        bsz, seq_len, h = hidden_states.shape
        # compute gating score
        hidden_states = hidden_states.view(-1, h)
        logits = F.linear(
            hidden_states.type(torch.float32), self.weight.type(
                torch.float32), None
        )
        if self.moe_router_activation_func == "sigmoid":
            scores = logits.sigmoid()
        elif self.moe_router_activation_func == "softmax":
            scores = logits.softmax(dim=1)
        else:
            raise NotImplementedError(
                f"insupportable scoring function for MoE gating: {self.moe_router_activation_func}"
            )

        # select top-k experts
        assert not self.training
        scores_for_choice = scores.view(bsz * seq_len, -1)
        scores_for_choice += self.e_score_correction_bias.unsqueeze(0)
        group_scores = (
            scores_for_choice.view(
                bsz * seq_len, self.num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
        )  # [n, num_expert_group]
        group_idx = torch.topk(
            group_scores, k=self.topk_group, dim=-1, sorted=False
        )[
            1
        ]  # [n, top_k_group]
        group_mask = torch.zeros_like(group_scores)  # [n, num_expert_group]
        group_mask.scatter_(1, group_idx, 1)  # [n, num_expert_group]
        score_mask = (
            group_mask.unsqueeze(-1)
            .expand(
                bsz * seq_len, self.num_expert_group, self.num_experts // self.num_expert_group
            )
            .reshape(bsz * seq_len, -1)
        )  # [n, e]
        tmp_scores = scores_for_choice.masked_fill(
            ~score_mask.bool(), 0.0)  # [n, e]
        _, topk_idx = torch.topk(
            tmp_scores, k=self.top_k, dim=-1, sorted=False
        )
        topk_weight = scores.gather(1, topk_idx)

        # norm gate to sum 1
        if self.top_k > 1 and self.moe_renormalize:
            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
            topk_weight = topk_weight / denominator
        # must multiply the scaling factor
        topk_weight = topk_weight * self.routed_scaling_factor

        return topk_idx, topk_weight


class KimiSparseMoeBlock(nn.Module):
    """
    Adapted from Deepseek-V3's MOE implementation
    The namings are consistent with Kimi's version.
    """

    def __init__(self, config: KimiLinearConfig):
        super().__init__()
        self.config = config
        self.hidden_dim = config.hidden_size
        self.num_experts = config.num_experts
        self.top_k = config.num_experts_per_token
        self.moe_renormalize = config.moe_renormalize

        self.ep_size = 1
        self.experts_per_rank = config.num_experts
        self.ep_rank = 0
        self.experts = nn.ModuleList(
            [
                KimiBlockSparseMLP(
                    config, intermediate_size=config.moe_intermediate_size
                )
                for _ in range(config.num_experts)
            ]
        )
        self.gate = KimiMoEGate(config)
        if config.num_shared_experts is not None:
            intermediate_size = config.moe_intermediate_size * config.num_shared_experts
            self.shared_experts = KimiMLP(
                config=config, intermediate_size=intermediate_size
            )

    def forward(self, hidden_states):
        identity = hidden_states
        orig_shape = hidden_states.shape
        topk_idx, topk_weight = self.gate(hidden_states)
        hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
        flat_topk_idx = topk_idx.view(-1)
        if not self.training:
            y = self.moe_infer(hidden_states, topk_idx,
                               topk_weight).view(*orig_shape)
        else:
            raise NotImplementedError(
                "Training mode is not supported in KimiSparseMoeBlock")
        if self.config.num_shared_experts is not None:
            y = y + self.shared_experts(identity)
        return y

    @torch.no_grad()
    def moe_infer(self, x, topk_ids, topk_weight):
        cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
        cnts.scatter_(1, topk_ids, 1)
        tokens_per_expert = cnts.sum(dim=0)
        idxs = topk_ids.view(-1).argsort()
        sorted_tokens = x[idxs // topk_ids.shape[1]]

        tokens_per_expert = tokens_per_expert.cpu().numpy()

        outputs = []
        start_idx = 0
        for i, num_tokens in enumerate(tokens_per_expert):
            end_idx = start_idx + num_tokens
            if num_tokens == 0:
                continue
            expert = self.experts[i + self.ep_rank * self.experts_per_rank]
            tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
            expert_out = expert(tokens_for_this_expert)
            outputs.append(expert_out)
            start_idx = end_idx

        outs = torch.cat(outputs, dim=0) if len(
            outputs) else sorted_tokens.new_empty(0)

        new_x = torch.empty_like(outs)
        new_x[idxs] = outs
        final_out = (
            new_x.view(*topk_ids.shape, -1)
            .type(topk_weight.dtype)
            .mul_(topk_weight.unsqueeze(dim=-1))
            .sum(dim=1)
            .type(new_x.dtype)
        )
        return final_out


class KimiDecoderLayer(nn.Module):
    def __init__(self, config: KimiLinearConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.config = config
        if config.is_kda_layer(layer_idx):
            self.is_linear_attn = True
            self.self_attn = KimiDeltaAttention(
                config=config, layer_idx=layer_idx)
        elif config.is_mla:
            self.is_linear_attn = False
            self.self_attn = KimiMLAAttention(
                config=config, layer_idx=layer_idx)
        else:
            raise NotImplementedError
        if (
            config.num_experts is not None
            and layer_idx >= config.first_k_dense_replace
            and layer_idx % getattr(config, "moe_layer_freq", 1) == 0
        ):
            self.block_sparse_moe = KimiSparseMoeBlock(config)
        else:
            self.mlp = KimiMLP(config)
        self.input_layernorm = KimiRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = KimiRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        if self.is_linear_attn is False:
            hidden_states = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                **kwargs,
            )
        else:
            hidden_states = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                cache_params=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                **kwargs,
            )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        if hasattr(self, "block_sparse_moe"):
            hidden_states = self.block_sparse_moe(hidden_states)
        else:
            hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states


class KimiPreTrainedModel(PreTrainedModel):
    config_class = KimiLinearConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["KimiDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _can_record_outputs = {
        "router_logits": OutputRecorder(KimiBlockSparseMLP, index=1),
        "hidden_states": KimiDecoderLayer,
        "attentions": KimiMLAAttention,
    }
    _is_stateful = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class KimiLinearModel(KimiPreTrainedModel):
    def __init__(self, config: KimiLinearConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([KimiDecoderLayer(
            config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
        self.norm = KimiRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps)

        if getattr(config, "_attn_implementation", None) is not None:
            if config._attn_implementation != "flash_attention_2":
                logger.warning_once(
                    f"Ignoring the provided attention implementation {config._attn_implementation}")
                logger.warning_once("Using flash_attention_2 backend instead.")
                config._attn_implementation = "flash_attention_2"
        else:
            config._attn_implementation = "flash_attention_2"

        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def _update_linear_attn_mask(self, attention_mask, cache_position):
        """
        NOTE: Left-padding is used for linear attention mask.
        No need for zeroing states when
            1. Cached forward
            2. Attending to all inputs
        """
        linear_attn_mask = attention_mask
        if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
            linear_attn_mask = None
        return linear_attn_mask

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) and (inputs_embeds is None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds")

        # Get inputs_embeds
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = KimiDynamicCache(config=self.config)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length(
            ) if past_key_values is not None else 0
            cache_position: torch.Tensor = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = create_causal_mask(
            config=self.config,
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )
        linear_attn_mask = self._update_linear_attn_mask(
            attention_mask, cache_position)

        hidden_states = inputs_embeds
        if past_key_values is not None:
            assert isinstance(past_key_values, KimiDynamicCache)

        for decoder_layer in self.layers:
            layer_mask = linear_attn_mask if decoder_layer.is_linear_attn else causal_mask

            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=layer_mask,
                past_key_values=past_key_values,
                cache_position=cache_position,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
        )


class KimiLinearForCausalLM(KimiPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = KimiLinearModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(
            config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        generation_mode: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, KimiLinearForCausalLM

        >>> model = KimiLinearForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        logits = outputs[0]
        if generation_mode:
            logits = logits[:, -1:]
        logits = self.lm_head(logits)

        loss = None
        if labels is not None:
            loss = self.loss_function(
                logits, labels, self.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )