File size: 40,793 Bytes
919416f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
import math
from collections.abc import Callable
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import transformers
from einops import rearrange
from packaging import version
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import (ALL_ATTENTION_FUNCTIONS,
PreTrainedModel)
from transformers.processing_utils import Unpack
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (TransformersKwargs, auto_docstring,
can_return_tuple, logging)
from transformers.utils.generic import OutputRecorder, check_model_inputs
try:
from fla.layers.utils import get_unpad_data, index_first_axis, pad_input
from fla.modules import FusedRMSNormGated, ShortConvolution
from fla.ops.kda import chunk_kda, fused_recurrent_kda
from fla.ops.kda.gate import fused_kda_gate
except ImportError:
raise ImportError("Plese run `pip install -U fla-core`")
from .configuration_kimi import KimiLinearConfig
assert version.parse(transformers.__version__) >= version.parse("4.56.0"), \
"Please upgrade transformers to >= 4.56.0"
logger = logging.get_logger(__name__)
class KimiDynamicCache:
"""
Dynamic cache for Kimi model.
Inspired by Qwen3-Next
"""
is_compileable = False
def __init__(self, config: KimiLinearConfig):
super().__init__()
self.config = config
if config.linear_attn_config is not None:
self.layer_types = []
for i in range(config.num_hidden_layers):
if config.is_kda_layer(i):
self.layer_types.append("linear_attention")
else:
self.layer_types.append("full_attention")
else:
self.layer_types = ["full_attention"] * config.num_hidden_layers
self.transformer_layers = [
i for i in range(config.num_hidden_layers) if self.layer_types[i] == "full_attention"
]
linear_layers = [i for i in range(
config.num_hidden_layers) if self.layer_types[i] == "linear_attention"]
self.last_linear_layer = linear_layers[-1] if linear_layers else -1
self.conv_states = [None for _ in range(config.num_hidden_layers)]
self.recurrent_states = [None for _ in range(config.num_hidden_layers)]
self.key_cache = [None for _ in range(config.num_hidden_layers)]
self.value_cache = [None for _ in range(config.num_hidden_layers)]
def __len__(self):
return len(self.layer_types)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if self.key_cache[layer_idx] is None:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat(
[self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat(
[self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
if self.key_cache[layer_idx] is not None:
device = self.key_cache[layer_idx].device
beam_idx = beam_idx.to(device)
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(
0, beam_idx)
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(
0, beam_idx)
if self.conv_states[layer_idx] is not None:
device = self.conv_states[layer_idx][0].device
beam_idx = beam_idx.to(device)
q_conv, k_conv, v_conv = self.conv_states[layer_idx]
self.conv_states[layer_idx] = (
q_conv.index_select(0, beam_idx),
k_conv.index_select(0, beam_idx),
v_conv.index_select(0, beam_idx)
)
self.recurrent_states[layer_idx] = self.recurrent_states[layer_idx].index_select(
0, beam_idx)
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx] is None:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
the given layer at `layer_idx`.
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
"""
kv_offset = 0
query_length = cache_position.shape[0]
past_seen_tokens = self.get_seq_length(layer_idx)
kv_length = query_length + past_seen_tokens
return kv_length, kv_offset
@property
def has_previous_state(self):
"""We have a previous state if the last linear (conv) layer was already updated."""
if self.last_linear_layer == -1:
return False
return self.conv_states[self.last_linear_layer] is not None
class KimiRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
KimiRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * \
torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
ALL_LAYERNORM_LAYERS.append(KimiRMSNorm)
class KimiBlockSparseMLP(nn.Module):
def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
super().__init__()
self.config = config
self.ffn_dim = config.intermediate_size if intermediate_size is None else intermediate_size
self.hidden_dim = config.hidden_size if hidden_size is None else hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # gate
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) # down
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # up
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(
self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class KimiMLP(nn.Module):
def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(
self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class KimiMLAAttention(nn.Module):
"""
Multi-Latent Attention adapted from deepseek-v3
"""
def __init__(self, config: KimiLinearConfig, layer_idx: int):
nn.Module.__init__(self)
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = config.rope_theta
self.attention_dropout = getattr(config, "attention_dropout", 0.0)
try:
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.q_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
self.use_nope = config.mla_use_nope
self.scaling = self.q_head_dim ** (-0.5)
except Exception as e:
raise ValueError(
f"Kimi MLA config is not found or not properly formatted: {e}")
assert self.q_lora_rank is None
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.q_head_dim, bias=False,
)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
)
self.kv_a_layernorm = KimiRMSNorm(self.kv_lora_rank)
self.kv_b_proj = nn.Linear(
self.kv_lora_rank,
self.num_heads
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
)
self.is_causal = True
assert self.use_nope
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
batch_size, seq_length = hidden_states.shape[:-1]
query_shape = (batch_size, seq_length, -1, self.q_head_dim)
key_shape = (batch_size, seq_length, -1,
self.qk_nope_head_dim + self.v_head_dim)
q_states = self.q_proj(hidden_states)
q_states = q_states.view(query_shape).transpose(1, 2)
q_pass, q_rot = torch.split(
q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_pass, k_rot = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_pass = self.kv_b_proj(self.kv_a_layernorm(
k_pass)).view(key_shape).transpose(1, 2)
k_pass, value_states = torch.split(
k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
query_states = torch.cat((q_pass, q_rot), dim=-1)
key_states = torch.cat((k_pass, k_rot), dim=-1)
if past_key_values is not None:
key_states, value_states = past_key_values.update(
key_states, value_states, self.layer_idx)
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
value_states = F.pad(
value_states, [0, self.q_head_dim - self.v_head_dim])
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(
batch_size, seq_length, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class KimiDeltaAttention(nn.Module):
def __init__(self, config: KimiLinearConfig, layer_idx: int):
super().__init__()
self.config = config
self.mode = "chunk"
self.hidden_size = config.hidden_size
self.conv_size = config.linear_attn_config["short_conv_kernel_size"]
self.head_dim = config.linear_attn_config["head_dim"]
self.num_heads = config.linear_attn_config["num_heads"]
self.head_k_dim = self.head_dim
self.num_k_heads = self.num_heads
self.layer_idx = layer_idx
assert self.mode in [
'chunk', 'fused_recurrent'], f"Not suppoerted mode `{self.mode}`."
projection_k_size = self.head_k_dim * self.num_k_heads
projection_size = self.head_dim * self.num_heads
self.q_proj = nn.Linear(
self.hidden_size, projection_k_size, bias=False)
self.k_proj = nn.Linear(
self.hidden_size, projection_k_size, bias=False)
self.v_proj = nn.Linear(self.hidden_size, projection_size, bias=False)
self.q_conv1d = ShortConvolution(
hidden_size=projection_k_size,
kernel_size=self.conv_size,
activation='silu',
)
self.k_conv1d = ShortConvolution(
hidden_size=projection_k_size,
kernel_size=self.conv_size,
activation='silu'
)
self.v_conv1d = ShortConvolution(
hidden_size=projection_size,
kernel_size=self.conv_size,
activation='silu'
)
self.A_log = torch.nn.Parameter(torch.log(torch.empty(
self.num_heads, dtype=torch.float32).uniform_(1, 16)).view(1, 1, -1, 1))
self.f_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
self.f_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)
self.dt_bias = nn.Parameter(
torch.empty(projection_size, dtype=torch.float32))
self.b_proj = nn.Linear(self.hidden_size, self.num_heads, bias=False)
self.g_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
self.g_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)
self.o_norm = FusedRMSNormGated(
self.head_dim, eps=config.rms_norm_eps, activation='sigmoid')
self.o_proj = nn.Linear(projection_size, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
cache_params: Optional[KimiDynamicCache] = None,
**kwargs: Unpack[dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
if attention_mask.dim() != 2:
attention_mask = kwargs.get("padding_mask", None)
if attention_mask is not None and attention_mask.dim() != 2:
raise ValueError(
"attention_mask must be a 0-1 matrix of shape [batch_size, seq_len] "
"(0 = padding). 3D masks are not supported here."
)
use_cache = cache_params is not None
batch_size, q_len, _ = hidden_states.shape
mode = 'fused_recurrent' if q_len <= 64 else self.mode
if self.training:
assert mode == 'chunk', "Only chunk mode is supported in training."
cu_seqlens = kwargs.get('cu_seqlens', None)
indices = None
if attention_mask is not None:
indices, cu_seqlens, _ = get_unpad_data(attention_mask[:, -q_len:])
hidden_states = index_first_axis(
rearrange(hidden_states, "b s ... -> (b s) ..."), indices).unsqueeze(0)
conv_state_q, conv_state_k, conv_state_v = None, None, None
recurrent_state = None
if cache_params is not None:
if cache_params.conv_states[self.layer_idx] is not None:
conv_state_q, conv_state_k, conv_state_v = cache_params.conv_states[
self.layer_idx]
recurrent_state = cache_params.recurrent_states[self.layer_idx]
q, conv_state_q = self.q_conv1d(
x=self.q_proj(hidden_states),
cache=conv_state_q,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
k, conv_state_k = self.k_conv1d(
x=self.k_proj(hidden_states),
cache=conv_state_k,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
v, conv_state_v = self.v_conv1d(
x=self.v_proj(hidden_states),
cache=conv_state_v,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
g = self.f_b_proj(self.f_a_proj(hidden_states))
g = fused_kda_gate(g, self.A_log, self.head_dim, g_bias=self.dt_bias)
beta = self.b_proj(hidden_states).float().sigmoid()
q, k = map(lambda x: rearrange(
x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
if mode == 'chunk':
o, recurrent_state = chunk_kda(
q=q,
k=k,
v=v,
g=g,
beta=beta,
initial_state=recurrent_state,
output_final_state=True,
use_qk_l2norm_in_kernel=True,
cu_seqlens=cu_seqlens,
)
else:
o, recurrent_state = fused_recurrent_kda(
q=q,
k=k,
v=v,
g=g,
beta=beta,
initial_state=recurrent_state,
output_final_state=True,
use_qk_l2norm_in_kernel=True,
cu_seqlens=cu_seqlens,
)
if cache_params is not None:
cache_params.recurrent_states[self.layer_idx] = recurrent_state
cache_params.conv_states[self.layer_idx] = (
conv_state_q, conv_state_k, conv_state_v)
g = self.g_b_proj(self.g_a_proj(hidden_states))
g = rearrange(g, '... (h d) -> ... h d', d=self.head_dim)
o = self.o_norm(o, g)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
if attention_mask is not None:
o = pad_input(o.squeeze(0), indices, batch_size, q_len)
return o
class KimiMoEGate(nn.Module):
"""
MoEGate adapted from Deepseek-V3.
Parameter correspondences:
num_experts -> n_routed_experts
num_experts_per_token -> num_experts_per_tok
num_expert_group -> n_group
moe_router_activation_func -> scoring_func
"""
def __init__(self, config: KimiLinearConfig):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_token
self.num_experts = config.num_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.moe_router_activation_func = config.moe_router_activation_func
self.num_expert_group = getattr(config, "num_expert_group", 1)
self.topk_group = getattr(config, "topk_group", 1)
# topk selection algorithm
self.moe_renormalize = config.moe_renormalize
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(
torch.empty((self.num_experts, self.gating_dim))
)
self.e_score_correction_bias = nn.Parameter(
torch.empty((self.num_experts))
)
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
# compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(
hidden_states.type(torch.float32), self.weight.type(
torch.float32), None
)
if self.moe_router_activation_func == "sigmoid":
scores = logits.sigmoid()
elif self.moe_router_activation_func == "softmax":
scores = logits.softmax(dim=1)
else:
raise NotImplementedError(
f"insupportable scoring function for MoE gating: {self.moe_router_activation_func}"
)
# select top-k experts
assert not self.training
scores_for_choice = scores.view(bsz * seq_len, -1)
scores_for_choice += self.e_score_correction_bias.unsqueeze(0)
group_scores = (
scores_for_choice.view(
bsz * seq_len, self.num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
) # [n, num_expert_group]
group_idx = torch.topk(
group_scores, k=self.topk_group, dim=-1, sorted=False
)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, num_expert_group]
group_mask.scatter_(1, group_idx, 1) # [n, num_expert_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(
bsz * seq_len, self.num_expert_group, self.num_experts // self.num_expert_group
)
.reshape(bsz * seq_len, -1)
) # [n, e]
tmp_scores = scores_for_choice.masked_fill(
~score_mask.bool(), 0.0) # [n, e]
_, topk_idx = torch.topk(
tmp_scores, k=self.top_k, dim=-1, sorted=False
)
topk_weight = scores.gather(1, topk_idx)
# norm gate to sum 1
if self.top_k > 1 and self.moe_renormalize:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
# must multiply the scaling factor
topk_weight = topk_weight * self.routed_scaling_factor
return topk_idx, topk_weight
class KimiSparseMoeBlock(nn.Module):
"""
Adapted from Deepseek-V3's MOE implementation
The namings are consistent with Kimi's version.
"""
def __init__(self, config: KimiLinearConfig):
super().__init__()
self.config = config
self.hidden_dim = config.hidden_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_token
self.moe_renormalize = config.moe_renormalize
self.ep_size = 1
self.experts_per_rank = config.num_experts
self.ep_rank = 0
self.experts = nn.ModuleList(
[
KimiBlockSparseMLP(
config, intermediate_size=config.moe_intermediate_size
)
for _ in range(config.num_experts)
]
)
self.gate = KimiMoEGate(config)
if config.num_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.num_shared_experts
self.shared_experts = KimiMLP(
config=config, intermediate_size=intermediate_size
)
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if not self.training:
y = self.moe_infer(hidden_states, topk_idx,
topk_weight).view(*orig_shape)
else:
raise NotImplementedError(
"Training mode is not supported in KimiSparseMoeBlock")
if self.config.num_shared_experts is not None:
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, topk_ids, topk_weight):
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(
outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
class KimiDecoderLayer(nn.Module):
def __init__(self, config: KimiLinearConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
if config.is_kda_layer(layer_idx):
self.is_linear_attn = True
self.self_attn = KimiDeltaAttention(
config=config, layer_idx=layer_idx)
elif config.is_mla:
self.is_linear_attn = False
self.self_attn = KimiMLAAttention(
config=config, layer_idx=layer_idx)
else:
raise NotImplementedError
if (
config.num_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % getattr(config, "moe_layer_freq", 1) == 0
):
self.block_sparse_moe = KimiSparseMoeBlock(config)
else:
self.mlp = KimiMLP(config)
self.input_layernorm = KimiRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = KimiRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
if self.is_linear_attn is False:
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
else:
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
cache_params=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if hasattr(self, "block_sparse_moe"):
hidden_states = self.block_sparse_moe(hidden_states)
else:
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class KimiPreTrainedModel(PreTrainedModel):
config_class = KimiLinearConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["KimiDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_can_record_outputs = {
"router_logits": OutputRecorder(KimiBlockSparseMLP, index=1),
"hidden_states": KimiDecoderLayer,
"attentions": KimiMLAAttention,
}
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class KimiLinearModel(KimiPreTrainedModel):
def __init__(self, config: KimiLinearConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([KimiDecoderLayer(
config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = KimiRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
if getattr(config, "_attn_implementation", None) is not None:
if config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Ignoring the provided attention implementation {config._attn_implementation}")
logger.warning_once("Using flash_attention_2 backend instead.")
config._attn_implementation = "flash_attention_2"
else:
config._attn_implementation = "flash_attention_2"
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _update_linear_attn_mask(self, attention_mask, cache_position):
"""
NOTE: Left-padding is used for linear attention mask.
No need for zeroing states when
1. Cached forward
2. Attending to all inputs
"""
linear_attn_mask = attention_mask
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
linear_attn_mask = None
return linear_attn_mask
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) and (inputs_embeds is None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds")
# Get inputs_embeds
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = KimiDynamicCache(config=self.config)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length(
) if past_key_values is not None else 0
cache_position: torch.Tensor = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
linear_attn_mask = self._update_linear_attn_mask(
attention_mask, cache_position)
hidden_states = inputs_embeds
if past_key_values is not None:
assert isinstance(past_key_values, KimiDynamicCache)
for decoder_layer in self.layers:
layer_mask = linear_attn_mask if decoder_layer.is_linear_attn else causal_mask
hidden_states = decoder_layer(
hidden_states,
attention_mask=layer_mask,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
class KimiLinearForCausalLM(KimiPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = KimiLinearModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
generation_mode: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, KimiLinearForCausalLM
>>> model = KimiLinearForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = outputs[0]
if generation_mode:
logits = logits[:, -1:]
logits = self.lm_head(logits)
loss = None
if labels is not None:
loss = self.loss_function(
logits, labels, self.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|