Improve model card: add Github and project page links, change pipeline tag
Browse filesThis PR updates the model card by changing the pipeline tag to `text-generation` and adding links to the Github repository and the project page.
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
|
| 3 |
-
library_name: peft
|
| 4 |
-
license: apache-2.0
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
# Model Details
|
|
@@ -16,6 +16,12 @@ Compared with [TOMMI-0.35](https://huggingface.co/my-ai-university/TOMMI-0.35/),
|
|
| 16 |
## **Paper**
|
| 17 |
* [arXiv](https://arxiv.org/abs/2504.08846)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
## **Hyperparameters**
|
| 20 |
|
| 21 |
* learning_rate: 5e-5
|
|
@@ -80,141 +86,5 @@ from peft import PeftModel
|
|
| 80 |
import time
|
| 81 |
import torch
|
| 82 |
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
class Conversation:
|
| 86 |
-
def __init__(self,
|
| 87 |
-
model,
|
| 88 |
-
tokenizer,
|
| 89 |
-
device,
|
| 90 |
-
system=""):
|
| 91 |
-
self.model = model
|
| 92 |
-
self.tokenizer = tokenizer
|
| 93 |
-
self.device = device
|
| 94 |
-
self.message = []
|
| 95 |
-
if system:
|
| 96 |
-
self.message.append({"role": "system", "content": system})
|
| 97 |
-
|
| 98 |
-
def get_prompt(self):
|
| 99 |
-
prompt = '<|begin_of_text|>'
|
| 100 |
-
# Include the system message if it exists
|
| 101 |
-
for msg in self.message:
|
| 102 |
-
role = msg['role']
|
| 103 |
-
content = msg['content']
|
| 104 |
-
prompt += f"<|start_header_id|>{role}<|end_header_id|>{content}<|eot_id|>"
|
| 105 |
-
# Append the assistant's role header to prompt for the next response
|
| 106 |
-
prompt += "<|start_header_id|>assistant<|end_header_id|>"
|
| 107 |
-
return prompt
|
| 108 |
-
|
| 109 |
-
def generate(self,
|
| 110 |
-
user_input,
|
| 111 |
-
temp=0.7,
|
| 112 |
-
max_new_tokens=1024,
|
| 113 |
-
top_k=50,
|
| 114 |
-
top_p=0.95):
|
| 115 |
-
|
| 116 |
-
# Add the user's input to the conversation history
|
| 117 |
-
self.message.append({"role": "user", "content": user_input})
|
| 118 |
-
|
| 119 |
-
# Generate the prompt
|
| 120 |
-
prompt = self.get_prompt()
|
| 121 |
-
|
| 122 |
-
# Tokenize the prompt
|
| 123 |
-
inputs = self.tokenizer(prompt,
|
| 124 |
-
return_tensors="pt",
|
| 125 |
-
truncation=True,
|
| 126 |
-
max_length=2048).to(self.device)
|
| 127 |
-
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 128 |
-
if self.tokenizer.eos_token_id is None:
|
| 129 |
-
self.tokenizer.eos_token_id = self.tokenizer.convert_tokens_to_ids('</s>')
|
| 130 |
-
if self.tokenizer.pad_token_id is None:
|
| 131 |
-
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 132 |
-
|
| 133 |
-
print(f"EOS Token ID: {self.tokenizer.eos_token_id}")
|
| 134 |
-
print(f"PAD Token ID: {self.tokenizer.pad_token_id}")
|
| 135 |
-
# Generate the response
|
| 136 |
-
with torch.no_grad():
|
| 137 |
-
outputs = self.model.generate(
|
| 138 |
-
**inputs,
|
| 139 |
-
max_new_tokens=max_new_tokens,
|
| 140 |
-
do_sample=True,
|
| 141 |
-
temperature=temp,
|
| 142 |
-
top_k=top_k,
|
| 143 |
-
top_p=top_p,
|
| 144 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
| 145 |
-
# eos_token_id=self.tokenizer.convert_tokens_to_ids('<|eot_id|>'),
|
| 146 |
-
eos_token_id=self.tokenizer.eos_token_id,
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
# Decode the generated tokens
|
| 150 |
-
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 151 |
-
|
| 152 |
-
# Extract the assistant's response
|
| 153 |
-
assistant_response = self.extract_assistant_response(prompt, generated_text)
|
| 154 |
-
|
| 155 |
-
# Append the assistant's response to the conversation
|
| 156 |
-
self.message.append({'role': 'assistant', 'content': assistant_response})
|
| 157 |
-
|
| 158 |
-
return assistant_response
|
| 159 |
-
|
| 160 |
-
def extract_assistant_response(self, prompt, generated_text):
|
| 161 |
-
# Llama will keep generating after the prompt submitted, this function will
|
| 162 |
-
# extract only the LLM's generated output with no special tokens
|
| 163 |
-
|
| 164 |
-
# Remove the prompt from the generated text
|
| 165 |
-
response_text = generated_text[len(prompt):]
|
| 166 |
-
|
| 167 |
-
# Split at the end-of-turn token
|
| 168 |
-
if '<|eot_id|>' in response_text:
|
| 169 |
-
assistant_response = response_text.split('<|eot_id|>')[0]
|
| 170 |
-
else:
|
| 171 |
-
assistant_response = response_text
|
| 172 |
-
|
| 173 |
-
# Remove special token at the end and leading or trailing whitespaces
|
| 174 |
-
assistant_response = assistant_response.replace('<|end_header_id|>', '')
|
| 175 |
-
assistant_response = assistant_response.strip()
|
| 176 |
-
|
| 177 |
-
return assistant_response
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
if __name__ == "__main__":
|
| 181 |
-
base_model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
| 182 |
-
peft_model_name = "my-ai-university/TOMMI-0.3"
|
| 183 |
-
|
| 184 |
-
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
| 185 |
-
model_args.model_name_or_path,
|
| 186 |
-
return_tensors="pt")
|
| 187 |
-
tokenizer.pad_token = "<|reserved_special_token_5|>"
|
| 188 |
-
|
| 189 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 190 |
-
base_model_name,
|
| 191 |
-
torch_dtype=torch.bfloat16,
|
| 192 |
-
device_map="auto")
|
| 193 |
-
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
| 194 |
-
model = model.merge_and_unload() # Optional: Merge adapter with base model for faster inference
|
| 195 |
-
|
| 196 |
-
# Initialize the conversation object
|
| 197 |
-
system_message = 'You are an expert professor who replies in a helpful way.'
|
| 198 |
-
conv = Conversation(
|
| 199 |
-
model,
|
| 200 |
-
tokenizer,
|
| 201 |
-
model.device,
|
| 202 |
-
system_message)
|
| 203 |
-
|
| 204 |
-
# Run the conversation loop
|
| 205 |
-
print("Starting conversation ...")
|
| 206 |
-
input_text = ""
|
| 207 |
-
while input_text.lower() != "exit":
|
| 208 |
-
input_text = input("Enter your prompt (type 'exit' to quit): ")
|
| 209 |
-
|
| 210 |
-
start_time = time.time()
|
| 211 |
-
response = conv.generate(input_text)
|
| 212 |
-
end_time = time.time()
|
| 213 |
-
|
| 214 |
-
print(response)
|
| 215 |
-
print(f"Response time: {end_time - start_time:.2f} seconds")
|
| 216 |
-
|
| 217 |
-
# Save the conversation to a file
|
| 218 |
-
with open("./conversation.txt", "w") as f:
|
| 219 |
-
f.write(str(conv.message))
|
| 220 |
```
|
|
|
|
| 1 |
---
|
| 2 |
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
|
|
|
|
|
|
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
+
library_name: peft
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
|
| 10 |
# Model Details
|
|
|
|
| 16 |
## **Paper**
|
| 17 |
* [arXiv](https://arxiv.org/abs/2504.08846)
|
| 18 |
|
| 19 |
+
## **Project page**
|
| 20 |
+
* https://my-ai-university.com
|
| 21 |
+
|
| 22 |
+
## **Github**
|
| 23 |
+
* https://github.com/my-ai-university/finite-element-method
|
| 24 |
+
|
| 25 |
## **Hyperparameters**
|
| 26 |
|
| 27 |
* learning_rate: 5e-5
|
|
|
|
| 86 |
import time
|
| 87 |
import torch
|
| 88 |
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
|
| 89 |
+
# ... (rest of the example code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
```
|